DOI QR코드

DOI QR Code

Cationic Dye (Methylene Blue) Removal from Aqueous Solution by Montmorillonite

  • Fil, Baybars Ali (Ataturk University, Faculty of Engineering, Department of Environmental Engineering) ;
  • Ozmetin, Cengiz (Balikesir University, Faculty of Engineering, Department of Environmental Engineering) ;
  • Korkmaz, Mustafa (Balikesir University, Faculty of Engineering, Department of Environmental Engineering)
  • Received : 2012.01.30
  • Accepted : 2012.06.30
  • Published : 2012.10.20

Abstract

Color impurity in industrial effluents pose a significant risk to human health and the environment, so much effort has been expended to degrade them using various methods, including the use of clay minerals as adsorbent. The purpose of this study was to advance understanding of the mechanisms for the removal of methylene blue (MB) from aqueous solutions onto montmorillonite as an adsorbent. Preliminary experiments showed that montmorillonite was effective for this purpose and adsorption equilibrium could be reached in about 24 h. Adsorption capacity of the clay decreased with increase in temperature and ionic strength, and increased with in pH. The fitness of equilibrium data to common isotherm equations such as the Langmuir, Freundlich, Elovich, Temkin and Dubinin-Radushkevich were tested. The Langmuir equation fitted to equilibrium data better than all tested isotherm models. Thermodynamic activation parameters such as ${\Delta}G^0$, ${\Delta}S^0$ and ${\Delta}H^0$ were also calculated and results were evaluated. As result montmorillonite clay was found as effective low cost adsorbent for removal of cationic dyes from waste waters.

Keywords

References

  1. Manu, B.; Chaudhari, S. Bioresour. Technol. 2002, 82, 225. https://doi.org/10.1016/S0960-8524(01)00190-0
  2. Métivier-Pignon, H.; Faur-Brasquet, C.; Le Cloirec, P. Sep. Purif. Technol. 2003, 31, 3. https://doi.org/10.1016/S1383-5866(02)00147-8
  3. Zohra, B.; Aicha, K.; Fatima, S.; Nourredine, B.; Zoubir, D. Chem. Eng. J. 2008, 136, 295. https://doi.org/10.1016/j.cej.2007.03.086
  4. Senthilkumaar, S.; Varadarajan, P. R.; Porkodi, K.; Subbhuraam, C.V. J. Colloid Interface Sci. 2005, 284, 78. https://doi.org/10.1016/j.jcis.2004.09.027
  5. browski, A. Adv. Colloid Interfac. 2001, 93, 135. https://doi.org/10.1016/S0001-8686(00)00082-8
  6. Allen, S. J.; McKay, G.; Porter, J. F. J. Colloid Interf. Sci. 2004, 280, 322. https://doi.org/10.1016/j.jcis.2004.08.078
  7. Tan, I. A. W.; Ahmad, A. L.; Hameed, B. H. J. Hazard. Mater. 2008, 154, 337. https://doi.org/10.1016/j.jhazmat.2007.10.031
  8. Annadurai, G.; Ling, L. Y.; Lee, J. F. J. Hazard. Mater. 2008, 152, 337. https://doi.org/10.1016/j.jhazmat.2007.07.002
  9. Huang, C.-H.; Chang, K.-P.; Ou, H.-D.; Chiang, Y.-C.; Wang, C.- F. Micropor. Mesopor. Mat. 2011, 141, 102. https://doi.org/10.1016/j.micromeso.2010.11.002
  10. Fan, X.; Tu, B.; Ma, H.; Wang, X. Bull. Korean Chem. Soc. 2011, 38, 2560.
  11. Wang, L.; Zhang, J.; Wang, A. Colloid Surface A 2008, 322, 47. https://doi.org/10.1016/j.colsurfa.2008.02.019
  12. El Qada, E. N.; Allen, S. J.; Walker, G. M. Chem. Eng. J. 2006, 124, 103. https://doi.org/10.1016/j.cej.2006.08.015
  13. Hameed, B. H.; Ahmad, A. A.; Aziz, N. Chem. Eng. J. 2007, 133, 195. https://doi.org/10.1016/j.cej.2007.01.032
  14. Al-Futaisi, A.; Jamrah, A.; Al-Hanai, R. Desalination 2007, 214, 327. https://doi.org/10.1016/j.desal.2006.10.024
  15. Allen, S. J.; Gan, Q.; Matthews, R.; Johnson, P. A. Bioresour. Technol. 2003, 88, 143. https://doi.org/10.1016/S0960-8524(02)00281-X
  16. Talman, R. Y.; Atun, G. Colloid Surface A 2006, 281, 15. https://doi.org/10.1016/j.colsurfa.2006.02.006
  17. Han, R.; Han, P.; Cai, Z.; Zhao, Z.; Tang, M. J. Environ. Sci. (China) 2008, 20, 1035. https://doi.org/10.1016/S1001-0742(08)62146-4
  18. Harris, R. G.; Johnson, B. B.; Wells, J. D. Clay Clay Miner. 2006, 54, 449. https://doi.org/10.1346/CCMN.2006.0540405
  19. Harris, R. G.; Wells, J. D.; Angove, M. J.; Johnson, B. B. Clay Clay Miner. 2006, 54, 456. https://doi.org/10.1346/CCMN.2006.0540406
  20. Weng, C.-H.; Pan, Y.-F. J. Hazard. Mater. 2007, 144, 355. https://doi.org/10.1016/j.jhazmat.2006.09.097
  21. Liu, Y.; Zheng, Y.; Wang, A. J. Environ. Sci. (China) 2010, 22, 486. https://doi.org/10.1016/S1001-0742(09)60134-0
  22. Rytwo, G.; Gonen, Y.; Huterer-Shveky, R. Clay Clay Miner. 2009, 57, 555. https://doi.org/10.1346/CCMN.2009.0570504
  23. Qiu, M.; Qian, C.; Xu, J.; Wu, J.; Wang, G. Desalination 2009, 243, 286. https://doi.org/10.1016/j.desal.2008.04.029
  24. Strawn, D. G.; Palmer, N. E.; Furnare, L. J.; Goodell, C.; Amonette, J. E.; Kukkadapu, R. K. Clay Clay Miner. 2004, 52, 321. https://doi.org/10.1346/CCMN.2004.0520307
  25. Guegan, R.; Gautier, M.; Beny, J.-M.; Muller, F. Clay Clay Miner. 2009, 57, 502. https://doi.org/10.1346/CCMN.2009.0570411
  26. Arma an, B.; Ozdemir, O.; Turan, M.; Çelik, M. S. J. Chem. Technol. Biot. 2003, 78, 725. https://doi.org/10.1002/jctb.844
  27. Elaziouti, A.; Laouedj, N. J. Korean Chem. Soc. 2010, 54, 603. https://doi.org/10.5012/jkcs.2010.54.5.603
  28. Dogan, M.; Alkan, M. Chemosphere 2003, 50, 517.
  29. Anirudhan, T. S.; Suchithra, P. S. J. Environ. Sci. (China) 2009, 21, 884. https://doi.org/10.1016/S1001-0742(08)62358-X
  30. Ozdemir, A.; Keskin, C. S. Clay Clay Miner. 2009, 57, 695. https://doi.org/10.1346/CCMN.2009.0570603
  31. Crini, G. Bioresour. Technol. 2006, 97, 1061. https://doi.org/10.1016/j.biortech.2005.05.001
  32. Rodriguez, A.; Garcia, J.; Ovejero, G.; Mestanza, M. J. Hazard. Mater. 2009, 172, 1311. https://doi.org/10.1016/j.jhazmat.2009.07.138
  33. Dogan, M.; Alkan, M.; Turkyilmaz, A.; Ozdemir, Y. J. Hazard. Mater. 2004, 109, 141. https://doi.org/10.1016/j.jhazmat.2004.03.003
  34. Yang, X.-Y.; Al-Duri, B. Chem. Eng. J. 2001, 83, 15. https://doi.org/10.1016/S1385-8947(00)00233-3
  35. Langmuir, I. J. Am. Chem. Soc. 1918, 1361.
  36. Hall, K. R.; Eagleton, L. C.; Acrivos, A.; Vermeulen, T. Ind. Eng. Chem. Fund. 1966, 5, 212. https://doi.org/10.1021/i160018a011
  37. Freundlich, H. M. F. J. Phys. Chem. 1906, 57, 385.
  38. Elovich, S. Y.; Larionov, O. G. Russ. Chem. Bull. 1962, 2, 209.
  39. Temkin, M. I. Zh. Fiz. Khim. 1941, 15, 296.
  40. Dubinin, M. M.; Radushkevich, L. V. Chem. Zentr. 1947, 55, 331.
  41. Hasany, S. M.; Chaudhary, M. H. Appl. Radiat. Isotopes 1996, 47, 467. https://doi.org/10.1016/0969-8043(95)00310-X
  42. Hajjaji, M.; Alami, A.; Bouadili, A. E. J. Hazard. Mater. 2006, 135, 188. https://doi.org/10.1016/j.jhazmat.2005.11.048
  43. Dogan, M.; Alkan, M. J. Colloid Interf. Sci. 2003, 267, 32. https://doi.org/10.1016/S0021-9797(03)00579-4
  44. Purkait, M. K.; Maiti, A.; DasGupta, S.; De, S. J. Hazard. Mater. 2007, 145, 287. https://doi.org/10.1016/j.jhazmat.2006.11.021
  45. Al-Qodah, Z. Water. Res. 2000, 34, 4295. https://doi.org/10.1016/S0043-1354(00)00196-2
  46. Narine, D. R.; Guy, R. D. Clay Clay Miner. 1981, 29, 205. https://doi.org/10.1346/CCMN.1981.0290306
  47. Ma, Y. L.; Xu, Z. R.; Guo, T.; You, P. J. Colloid Interf. Sci. 2004, 280, 283. https://doi.org/10.1016/j.jcis.2004.08.044
  48. Ozdemir, Y.; Do an, M.; Alkan, M. Micropor. Mesopor. Mat. 2006, 96, 419. https://doi.org/10.1016/j.micromeso.2006.07.026
  49. Wong, Y. C.; Szeto, Y. S.; Cheung, W. H.; McKay, G. Process Biochem. 2004, 39, 695. https://doi.org/10.1016/S0032-9592(03)00152-3
  50. Alkan, M.; Do an, M. J. Colloid Interf. Sci. 2001, 243, 280. https://doi.org/10.1006/jcis.2001.7796
  51. Gunay, A.; Arslankaya, E.; Tosun, I. J. Hazard. Mater. 2007, 146, 362. https://doi.org/10.1016/j.jhazmat.2006.12.034
  52. Nandi, B. K.; Goswami, A.; Purkait, M. K. J. Hazard. Mater. 2009, 161, 387. https://doi.org/10.1016/j.jhazmat.2008.03.110

Cited by

  1. Investigation of adsorption of the dyestuff astrazon red violet 3rn (basic violet 16) on montmorillonite clay vol.31, pp.1, 2014, https://doi.org/10.1590/S0104-66322014000100016
  2. Enhanced decolorization of aqueous dye solutions by a high quality copolymer flocculant vol.5, pp.79, 2015, https://doi.org/10.1039/C5RA07662E
  3. Adsorption of methylene blue onto powdered activated carbon immobilized in a carboxymethyl sago pulp hydrogel vol.134, pp.4, 2016, https://doi.org/10.1002/app.44271
  4. Synthesis of guar gum-acrylic acid graft copolymers based biodegradable adsorbents for cationic dye removal vol.20, pp.2, 2016, https://doi.org/10.1007/s12588-016-9156-1
  5. : adsorption behavior for the removal of organic dye vol.23, pp.7, 2016, https://doi.org/10.1080/09276440.2016.1169707
  6. SERS and Raman imaging as a new tool to monitor dyeing on textile fibres vol.47, pp.10, 2016, https://doi.org/10.1002/jrs.4947
  7. Ggum-poly(Itaconic Acid) Based Superabsorbents Via Two-Step Free-Radical Aqueous Polymerization for Environmental and Antibacterial Applications vol.25, pp.2, 2017, https://doi.org/10.1007/s10924-016-0796-1
  8. Adsorption of Crystal Violet Dye from Aqueous Solution by Poly(Acrylamide-co-Maleic Acid)/Montmorillonite Nanocomposite vol.25, pp.3, 2017, https://doi.org/10.1007/s10924-016-0842-z
  9. Protic Ionic Liquid Assisted Synthesis and Characterization of Ferromagnetic Cobalt Oxide Nanocatalyst vol.27, pp.2, 2017, https://doi.org/10.1007/s10904-016-0485-5
  10. Improvement adsorption capacity of methylene blue onto modified Tamazert kaolin pp.2048-4038, 2017, https://doi.org/10.1177/0263617416684835
  11. Methylene Blue Removal from Aqueous Solution by Adsorption on Nitric Acid Modified Water Treatment Sludge vol.931-932, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.931-932.251
  12. Photocatalytic decolourization of methylene blue using [Zn-Al] layered double hydroxides synthesized at different molar cationic ratios vol.52, pp.02, 2017, https://doi.org/10.1180/claymin.2017.052.2.03
  13. A Review of Dendrimer-Encapsulated Metal Nanocatalysts Applied in the Fine Chemical Transformations pp.1572-879X, 2019, https://doi.org/10.1007/s10562-018-2584-0
  14. Determining the Specific Surface Area of Carbon Electrode Materials for Electrodes of Supercapacitors via the Adsorption of Methylene Blue Dye vol.92, pp.4, 2018, https://doi.org/10.1134/S0036024418040209
  15. Synthesis and catalytic activity of Birnessite-Type Manganese Oxide synthesized by solvent-free method vol.345, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/345/1/012005
  16. Adsorption of Methyl Violet Dye a Textile Industry Effluent onto Montmorillonite—Batch Study vol.35, pp.12, 2012, https://doi.org/10.1080/01932691.2013.873865
  17. Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue vol.237, pp.None, 2012, https://doi.org/10.1016/j.cej.2013.09.066
  18. Adsorptive removal and kinetics of methylene blue from aqueous solution using NiO/MCM-41 composite vol.65, pp.None, 2012, https://doi.org/10.1016/j.physe.2014.08.006
  19. Kinetic, isotherm and pH dependency investigation and environmental application of cationic dye adsorption on montmorillonite vol.56, pp.9, 2012, https://doi.org/10.1080/19443994.2014.960465
  20. Removal of Methylene Blue by Amidoxime Polyacrylonitrile-Grafted Cotton Fabrics: Kinetic, Equilibrium, and Simulation Studies vol.17, pp.11, 2016, https://doi.org/10.1007/s12221-016-6373-3
  21. Application of Nonlinear Regression Analysis for Methyl Violet (MV) Dye Adsorption from Solutions onto Illite Clay vol.37, pp.7, 2012, https://doi.org/10.1080/01932691.2015.1077455
  22. Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of malachite green dye onto montmorillonite clay vol.34, pp.1, 2012, https://doi.org/10.1080/02726351.2015.1052122
  23. Simultaneous Cr(VI) reduction and methylene blue removal byBacillussp. JH2-2 isolated from mining site soil vol.57, pp.15, 2012, https://doi.org/10.1080/19443994.2015.1012563
  24. Development of grafted cotton fabrics ions exchanger for dye removal applications: methylene blue model vol.57, pp.46, 2012, https://doi.org/10.1080/19443994.2015.1128363
  25. Study of the effect of an acid treatment of a natural Moroccan bentonite on its physicochemical and adsorption properties vol.75, pp.5, 2017, https://doi.org/10.2166/wst.2016.602
  26. Synthesis and characterisation of zeolite-A and Zn-exchanged zeolite-A based on natural aluminosilicates and their potential applications vol.5, pp.1, 2012, https://doi.org/10.1080/23311916.2018.1440480
  27. Characterization and Evaluation of Zeolite A/Fe3O4 Nanocomposite as a Potential Adsorbent for Removal of Organic Molecules from Wastewater vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/8090756
  28. Silica Supported Copper-Nickel Oxide Catalyst for Photodegradation of Methylene Blue vol.31, pp.12, 2012, https://doi.org/10.14233/ajchem.2019.22284
  29. Polypyrrole-Chitosan-CaFe2O4 Layer Sensor for Detection of Anionic and Cationic Dye Using Surface Plasmon Resonance vol.2020, pp.None, 2012, https://doi.org/10.1155/2020/3489509
  30. Visible-light active electrochemically deposited tin selenide thin films: synthesis, characterization and photocatalytic activity vol.31, pp.6, 2012, https://doi.org/10.1007/s10854-020-03027-0
  31. 고도산화공정인 오존처리에 의한 난분해성 염료 수용액의 분해특성 vol.39, pp.1, 2012, https://doi.org/10.5338/kjea.2020.39.1.8
  32. Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions vol.10, pp.32, 2012, https://doi.org/10.1039/d0ra02424d
  33. Visible Light Responsive Strontium Carbonate Catalyst Derived from Solvothermal Synthesis vol.10, pp.9, 2012, https://doi.org/10.3390/catal10091069
  34. Chemical modification of xanthan gum through graft copolymerization: Tailored properties and potential applications in drug delivery and wastewater treatment vol.251, pp.None, 2012, https://doi.org/10.1016/j.carbpol.2020.117095
  35. Kinetics and Mechanism of Adsorption of Anionic Dyes on Montmorillonite Modified with Sodium Metasilicate vol.95, pp.1, 2012, https://doi.org/10.1134/s003602442101012x
  36. Char Products From Bamboo Waste Pyrolysis and Acid Activation vol.7, pp.None, 2012, https://doi.org/10.3389/fmats.2020.624791
  37. Defluoridation of Aqueous Solution Using Thermally Activated Biosorbents Prepared from Adansonia digitata Fruit Pericarp vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/5574900
  38. Phosphate-Assisted Transformation of Methylene Blue to Red-Emissive Carbon Dots with Enhanced Singlet Oxygen Generation for Photodynamic Therapy vol.4, pp.5, 2012, https://doi.org/10.1021/acsanm.1c00406
  39. Application of electrospun Polyamide-6/Modified zeolite nanofibrous composite to remove Acid Blue 74 dye from textile dyeing wastewater vol.112, pp.11, 2012, https://doi.org/10.1080/00405000.2020.1840691
  40. Bio‐fabricated green silver nano‐architecture for degradation of methylene blue water contaminant: A mini‐review vol.93, pp.12, 2012, https://doi.org/10.1002/wer.1649
  41. Simultaneous adsorption of chromium and acidic dye from leather tannery model wastewater using a novel modified nanoclay vol.80, pp.24, 2012, https://doi.org/10.1007/s12665-021-10120-y