DOI QR코드

DOI QR Code

Synthesis of Carbon Nanofibers Based on Resol Type Phenol Resin and Fe(III) Catalysts

  • Received : 2012.05.18
  • Accepted : 2012.06.30
  • Published : 2012.10.20

Abstract

The carbon nanofibers (CNFs) used in this study were synthesized with an iron catalyst and ethylene as a carbon source. A concentration of 30 wt % iron(III) acetylacetonate was dissolved in resol type phenol resin and polyurethane foam was put into the solution. The sample was calendered after being cured at $80^{\circ}C$ in air for 24 h. Stabilization and carbonization of the resol type phenol resin and reduction of the $Fe^{3+}$ were completed in a high-temperature furnace by the following steps: 1) heating to $600^{\circ}C$ at a rate of $10^{\circ}C/min$ with a mixture of $H_2/N_2$ for 4 h to reduce the $Fe^{3+}$ to Fe; 2) heating to $1000^{\circ}C$ in $N_2$ at a rate $10^{\circ}C/min$ for 30 minutes for pyrolysis; 3) synthesizing CNFs in a mixture of 20.1% ethylene and $H_2/N_2$ at $700^{\circ}C$ for 2 h using a CVD process. Finally, the structural characterization of the CNFs was performed by scanning electron microscopy and a synthesis analysis was carried out using energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Specific surface area analysis of the CNFs was also performed by $N_2$-sorption.

Keywords

References

  1. Science sharing association, Carbon Fibers with Various Types and Thousands Faces; Iljinsa Press: 2010.
  2. Won, J. O.; Won, Y. M. Chemical and Material for Nano Technology; Freedom Academy: 2009.
  3. Seo, G. Y. Understanding Nano Technology; SNU Press: 2011.
  4. Seo, I. S.; Park, C. G. Carbon Fiber; Korea Institute of Science and Technology Information: 2002.
  5. Wenmakers, P. W. A. M.; Van der Schaaf, J.; Kuster, B. F. M.; Schouten, J. C. J. Mater. Chem. 2008, 18, 2426. https://doi.org/10.1039/b718673h
  6. Haoqing, H.; Reneke, D. H. Adv. Mater. 2004, 16, 69. https://doi.org/10.1002/adma.200306205
  7. Nerushev, O.; Dittmar, S.; Morjan, R.; Rohmund, F.; Campbellc, E. J. Appl. Phys. 2003, 93, 4185 https://doi.org/10.1063/1.1559433
  8. Jarrah, N.; Van Ommen, J.; Lefferts, L. J. Mater. Chem. 2004, 14, 1590. https://doi.org/10.1039/b314585a
  9. Shu-ping, Z. New Carbon Materials 2010, 25, 9. https://doi.org/10.1016/S1872-5805(09)60012-3
  10. Gallego, N. Carbon 2003, 41, 1461. https://doi.org/10.1016/S0008-6223(03)00091-5
  11. Patrick, W. A. M. W.; John van der, S.; Ben, F. M. K.; Jaap, C. S. J. Mater. Chem. 2008, 18, 2426. https://doi.org/10.1039/b718673h
  12. Breuer, O.; Sundararaj, U. Polymer Composites 2004, 25, 630. https://doi.org/10.1002/pc.20058
  13. Bai, J. B.; Allaoui, A. Composites Part A: Applied Science and Manufacturing 2003, 34, 689. https://doi.org/10.1016/S1359-835X(03)00140-4
  14. Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Schulte, K. Comp. Sci. Tech. 2005, 65, 2300. https://doi.org/10.1016/j.compscitech.2005.04.021
  15. Tzeng, S. S.; Yang, T. C. Composite Interfaces 2005, 12, 259. https://doi.org/10.1163/1568554053971614
  16. Matatov-Meytal, Y.; Sheintuch, M. Appl. Catal. A 2002, 231, 1. https://doi.org/10.1016/S0926-860X(01)00963-2
  17. Trubac, R. E.; Dautzenberg, F. M.; Griffin, T. A.; Paikert, B.; Schmidt, V. R.; Overbeek, R. A. Catal. Today 2001, 69, 17. https://doi.org/10.1016/S0920-5861(01)00350-9
  18. Jarrah, N. A.; Li, F.; Van Ommen, J. G.; Lefferts, L. J. Mater. Chem. 2005, 15, 1946. https://doi.org/10.1039/b416977h
  19. Jarrah, N. A.; Van Ommen, J. G.; Lefferts, L. J. Catal. 2006, 239, 460. https://doi.org/10.1016/j.jcat.2006.02.021
  20. Stemmet, C. P.; Jongmans, J. N.; Van der Schaaf, J.; Kuster, B. F. M.; Schouten, J. C. Chem. Eng. Sci. 2005, 60, 6422. https://doi.org/10.1016/j.ces.2005.03.027
  21. Stemmet, C. P.; Van der Schaaf, J.; Kuster, B. F. M.; Schouten, J. C. Chem. Eng. Res. Des. 2006, 84, 1134. https://doi.org/10.1205/cherd05034
  22. Stemmet, C. P.; Meeuwse, M.; Van der Schaaf, J.; Kuster, B. F. M.; Schouten, J. C. Chem. Eng. Sci. 2007, 62, 5444. https://doi.org/10.1016/j.ces.2007.02.016

Cited by

  1. Synthesis and Characterization of Carbon Nanofibers Grown on Ni and Mo Catalysts by Chemical Vapor Deposition vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10285
  2. Reaction-driven Ion Exchange of Copper into Zeolite SSZ-13 vol.5, pp.10, 2015, https://doi.org/10.1021/acscatal.5b01200
  3. Synthesis of Carbon Nanofibers on Iron and Copper Catalysts by Chemical Vapor Deposition vol.750-752, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.750-752.265