DOI QR코드

DOI QR Code

Saccharification and Ethanol Production from Chlorella sp. Through High Speed Extrusion Pretreatment

고속 압출 전처리 공정을 이용한 Chlorella sp. 당화 및 바이오에탄올 생산

  • Lee, Choon-Geun (Department of Biomedical Materials Engineering, Kangwon National University) ;
  • Choi, Woon-Yong (Department of Biomedical Materials Engineering, Kangwon National University) ;
  • Seo, Yong-Chang (Department of Biomedical Materials Engineering, Kangwon National University) ;
  • Song, Chi-Ho (Department of Biomedical Materials Engineering, Kangwon National University) ;
  • Ahn, Ju-Hee (Department of Biomedical Materials Engineering, Kangwon National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation) ;
  • Lee, Sang-Eun (Department of Biotechnology, Korea National University of Transportation) ;
  • Kang, Do-Hyung (Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Lee, Hyeon-Yong (Department of Teaics, Seowon University)
  • 이춘근 (강원대학교 의생명과학대학 의생명소재공학과) ;
  • 최운용 (강원대학교 의생명과학대학 의생명소재공학과) ;
  • 서용창 (강원대학교 의생명과학대학 의생명소재공학과) ;
  • 송치호 (강원대학교 의생명과학대학 의생명소재공학과) ;
  • 안주희 (강원대학교 의생명과학대학 의생명소재공학과) ;
  • 정경환 (한국교통대학교 보건생명대학 생명공학과) ;
  • 이상은 (한국교통대학교 보건생명대학 생명공학과) ;
  • 강도형 (한국해양과학기술원) ;
  • 이현용 (서원대학교 식품과학부 차학과)
  • Received : 2012.06.15
  • Accepted : 2012.06.27
  • Published : 2012.06.30

Abstract

Among various pretreatment processes for bioethanol production, extrusion pretreatment, one of cheap and simple process was investigated to efficiently produce fermentable sugars from micro alga, Chlorella sp. The biomass was pretreated in a single screw extruder at five different barrel temperatures of 45, 50, 55, 60 and $65^{\circ}C$, respectively with five screw rotation speed of 10, 50, 100, 150 and 200 rpm. The pretreated biomass was reacted with two different hydrolyzing enzymes of cellulase and amyloglucosidase since the biomass contained different types of carbohydrates, compared to cellulose of agricultural by-products such wheat and corn stovers, etc. In general, higher glucose conversion yield was obtained as 13.24 (%, w/w) at $55^{\circ}C$ of barrel temperature and 100 rpm of screw speed conditions. In treating 5 FPU/glucan of cellulase and 150 Unit/mL of amyloglucosidase, ca. 64% of cellulose and 40% of polysaccharides in the micro alga were converted into glucose, which was higher yields than those from other reported data without applying an extrusion process. 84% of the fermentable sugars obtained from the hyrolyzing processes were fermented into ethanol in considering 50% of theoretical maximum fermentation yield of the yeast. These results implied that high speed extrusion could be suitable as a pretreatment process for the production of bioethanol from Chlorella sp.

Keywords

References

  1. Chisti, Y. (2008) Biodiesel from microalgae beats bioethanol. Trends. Biotechnol. 26: 126-131. https://doi.org/10.1016/j.tibtech.2007.12.002
  2. Saulnier, L., C. Marot, E. Chanliaud, and J. F. Thibault (1995) Cell wall polysaccharide interaction in maize bran. Carbohydr. Polym. 26: 279-287. https://doi.org/10.1016/0144-8617(95)00020-8
  3. Miranda, J. R., P. C. Passarinho, and L. Gouveia (2012) Pretreatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource. Technol. 104: 342-348. https://doi.org/10.1016/j.biortech.2011.10.059
  4. Singh, J. and S. Gu (2010) Commercialization potential of microalgae for biofuels production. J. Renew. Sustain. Ener. 14: 2596-2610. https://doi.org/10.1016/j.rser.2010.06.014
  5. Talbot, P., J. M. Thébault, A. Dauta, and J. de la Noüe (1991) A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment. Water Res. 25: 465-472. https://doi.org/10.1016/0043-1354(91)90083-3
  6. Fernandes, B., G. Dragone, J. Teixeira, and A. Vicente (2010) Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl. Biochem. Biotechnol. 161: 218-226. https://doi.org/10.1007/s12010-009-8783-9
  7. Liu, Z. Y., G. C. Wang, and B. C. Zhou (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource. Technol. 99: 4717-4722. https://doi.org/10.1016/j.biortech.2007.09.073
  8. Huang, G., F. Chen, D. Wei, X. Zhang, and G. Chen (2010) Biodiesel production by microalgal biotechnology. Appl. Energy 87: 38-46. https://doi.org/10.1016/j.apenergy.2009.06.016
  9. Amaro, H. M., A. C. Guedes, and F. X. Malcata. (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy. 88: 3402-3410. https://doi.org/10.1016/j.apenergy.2010.12.014
  10. Choi, S. P., M. T. Nguyen, and S. J. Sim (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource. Technol. 101: 5330-5336. https://doi.org/10.1016/j.biortech.2010.02.026
  11. Yamada, T. and K. Sakaguchi (1982) Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch. Microbiol. 132: 10-13. https://doi.org/10.1007/BF00690809
  12. Allard, B. and J. Templier (2000) Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54: 369-380. https://doi.org/10.1016/S0031-9422(00)00135-7
  13. Atkinson, A. W., B. E. S. Gunning, and P. C. L. John. (1972) "Sporopollenin in the cell wall of chlorella and other algae: ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta 107: 1-32. https://doi.org/10.1007/BF00398011
  14. Koo, S. Y., K. H. Cha, and D. U. Lee (2007) Effects of high hydrostatic pressure of foods and biological system. Food Sci. Ind. 40: 23-30.
  15. Wikandari, R., R. Millati, S. Syamsiyah, R. Muriana, and Y. Ayuningsih (2010) Effect of furfural, hydroxymethylfurfural and acetic acid on indigeneous microbial isolate for bioethanol production. Agricultural J. 5: 105-109. https://doi.org/10.3923/aj.2010.105.109
  16. Palmqvist, E., B. Hahn-Hagerdal, M. Galbe, and G. Zacchi (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzym. Microb. Technol. 19: 470-476. https://doi.org/10.1016/S0141-0229(95)00234-0
  17. Martin, C., C. F. Wahlbom, M. Galbe, L. J. Jonsson, and B. Hahn-Hagerdal (2001) Preparation of sugarcane bagasse hydrolysates for alcoholic fermentation by yeasts. Enzym. Microb. Technol. 7: 361-367.
  18. Karunanithy, C. and K. Muthukumarappan (2010) Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl. Biochem. Bioethanol. 162: 264-279. https://doi.org/10.1007/s12010-009-8757-y
  19. Fu, C. C., T. C. Hung, J. Y. Chen, C. H. Su, and W. T. Wu (2010) Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource. Technol. 101: 8750-8754. https://doi.org/10.1016/j.biortech.2010.06.100
  20. Woo, H. C., J. H. Lee, and J. I. Park (2008) Production of bio-energy from marine algae: status and perspectives. Korean Chem. Eng. Res. 46: 833-844.
  21. Chu, F. E., J. L. Dupuya, and K. L. Webb (1982) Polysaccharide composition of five algal species used as food for larvae of the american oyster, Crassostrea Virginica. Aquaculture. 29: 241-252. https://doi.org/10.1016/0044-8486(82)90138-7
  22. Gray, K. A., L. Zhao, and M. Emptage (2006) Bioethanol. Curr. Opin. 10: 141-146. https://doi.org/10.1016/j.cbpa.2006.02.035
  23. Diaz, M. J., C. Cara, E. Ruiz, I. Romero, M. Moya, and E. Castro (2010) Hydrothermal pre-treatment of rapeseed straw. Bioresource Technol. 101: 2428-2435. https://doi.org/10.1016/j.biortech.2009.10.085
  24. Kumar, S., U. Kothari, L. Kong, Y. Y. Lee, and R. B. Gupta (2011) Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass Bioenerg. 35: 956-968. https://doi.org/10.1016/j.biombioe.2010.11.023
  25. Fang, Z., T. Sato, R. L. Smith-Jr, H. Inomata, K. Arai, and J. A. Kozimski (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technol. 99: 3424-3430. https://doi.org/10.1016/j.biortech.2007.08.008
  26. Zhang, S., J. Zhu, and C. Wang (2004) Novel high pressure extraction technology. Int. J. Pharmaceut. 278: 471-474. https://doi.org/10.1016/j.ijpharm.2004.02.029
  27. Guillard, R. R. L. (1975) Culture of phytoplankton for feeding marine invertebrate. pp. 296-360. In: W. L. Smith and M. H. Chanley (eds.). Culture of Marine Invertebrates Animals. Plenum, New York, USA.
  28. Linde, M., M. Galbe, and G. Zacchi (2008) Bioethanol production from non-starch carbohydrate residues in process stream from a dry-mill ethanol plant. Bioresource Technol. 99: 6505-6511. https://doi.org/10.1016/j.biortech.2007.11.032
  29. Han, J. G., S. H. Oh, M. H Jeong, H. B. Seo, K. H. Jeong, and H. Y. Lee (2010) Enhancement of sacchrification yield of Ulva pertusa kjellman for ethanol production through high temperature liquefaction process. KSBB J. 25: 245-362.
  30. Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresource Technol. 100: 1803-1808.
  31. Meuser, F. (1989) Technological aspects regarding specific changes to the characteristic properties of extrudates by HTST extrusion cooking. pp. 35-53. In: B. Van Lengerich and F. Kohler (eds.). Physical Properties of Foods. Elsevier Applied Science Pub., London, UK.
  32. Choi, J. W., H. J. Lim, K. S. Han, H. Y. Kang, and D. H. Choi (2005) Characterization of degradation features and degradative product of poplar wood (populusalba ${\times}$ glandulosa) by flow type-supercritical water treatment. J. Kor. For. En. 24: 39-46.
  33. Ryu, K. H. and B. S. Kim (2005) Properties of extracts from extruded root and white ginseng at different conditions. J. Korean Soc. Food Sci. Nutr. 34: 306-310. https://doi.org/10.3746/jkfn.2005.34.2.306
  34. Lee, J. W., S. J. Lee, Y. H. Oh, D. H. Kim, D. Y. Kwon, and C. G. Lee (2011) Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli Strains. Appl. Biochem. Biotechnol. 164: 878-888. https://doi.org/10.1007/s12010-011-9181-7
  35. Gouveia, L., J. R. Miranda, and P. C. Passarinho (2011) Pretreatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technol. 104: 342-348.
  36. Halima, R., R. Harun, M. K. Danquaha, and P. A. Webleya (2011) Microalgal cell disruption for bioethanol production. Appl. Energy 91: 116-121.

Cited by

  1. Extrusion process to enhance the pretreatment effect of ionic liquid for improving enzymatic hydrolysis of lignocellulosic biomass vol.54, pp.3, 2012, https://doi.org/10.1007/s00226-020-01170-9