
대한안전경영과학회지 제 14권 제 3 호 2012년 9월 229

소프트웨어 기반 시스템을 설계하는 새로운 접근법으로서의

인지시스템공학
함 동 한*

*전남대학교 산업공학과

Cognitive Systems Engineering as a New Approach to

Designing Software-Based Systems
Dong-Han Ham

*

*Dept. of Industrial Engineering, Chonnam National University

Abstract

소프트웨어 기반의 시스템 설계과정에서 설계자가 고려해야 하는 요소들이 다양해지면서 시스템 설계가 점점 어

려워지고 있다. 다양한 설계 요소들이 존재하지만 사용자의 특성 및 직무, 사용가능한 정보기술의 특성 등이 핵심

적인 요소로 간주된다. 또한 정보기술이 발달하면서 인간과 시스템의 상호작용이 점점 인지적인 특징을 지니게 되

었다. 따라서 사용성 높고, 효율적이면서 안전한 소프트웨어 기반의 시스템을 개발하기 위해서는 시스템 설계자가

사용자의 인지적인 요구사항 및 그들의 직무를 시스템 설계과정에서 체계적으로 다룰 수 있어야 한다. 그러나 소프

트웨어 공학, 시스템 공학 및 인간-컴퓨터 상호작용 등에서의 전통적인 시스템 설계 방법은 이러한 설계자의 설계

활동을 효과적으로 지원하는데 한계가 있었다. 그 대안으로 인지시스템공학(cognitive systems engineering; CSE)

은 인간중심의 설계철학을 바탕으로 소프트웨어 기반의 복잡한 시스템 설계과정에서 설계자의 활동을 체계적으로

도와줄 수 있는 유용한 개념과 방법을 제공해주고 있다. CSE는 원래 사람이 실시간으로 감시 및 제어해야 하는 복

잡한 사회기술적 시스템(예: 원자력발전소 및 공항관제소)의 분석, 설계 및 평가를 위해 태동한 학문이다. 그러나

CSE에서 제공하는 이론적 및 방법론적 프레임워크는 소프트웨어 기반의 시스템을 설계하는 데에도 유용하게 활용

할 수 있는 충분한 가능성을 갖고 있다. 이 논문은 CSE의 근간을 이루는 핵심 개념 및 원칙을 고찰하고 소프트웨

어 기반 시스템 설계에의 활용가능성 및 그 방안을 논의한다.

Keywords : Cognitive Systems Engineering, Cognitive Work Analysis, Software Requirements,

Requirements Engineering, Socio-technical Systems Engineering

1. Introduction

Software has become the backbone of modern

industrial systems (e.g. nuclear power plants (NPPs),

air traffic control, and intensive care unit) [2]. As

such software-based systems are increasingly

complex, their design and evaluation is accordingly

difficult [1]. There is a range of factors that system

designers should consider through whole phases of

development life cycle. Additionally, in comparison

with traditional software development focusing on

software program, design of software-based systems

includes other design items as well as software

program

†이 논문은 2012년도 전남대학교 학술연구비 지원에 의하여 연구되었음(과제번호: 2012-0730)

†교신저자: 함동한, 광주광역시 북구 용봉로 77 전남대학교 공과대학 산업공학과

M․P: 016-417-4607, E-mail: donghan.ham@gmail.com; dhham@jnu.ac.kr

2012년 7월 2일 접수; 2012년 9월 3일 수정본; 2012년 9월 4일 게재확정



소프트웨어 기반 시스템을 설계하는 새로운 접근법으로서의 인지시스템공학 함 동 한230

For example, design of information systems

operated in the control room of NPPs should be

accompanied by the design of task procedure,

training system, staffing, and alarm system.

Another main characteristic of software-based

systems is that the interaction between systems and

users is very cognitive [12]. This enforces system

designers to take into account cognitive

characteristics of users and to regard software-based

systems as artificial cognitive systems. Designers

need to have a viewpoint that human (natural

cognitive system) and software-based systems

(artificial cognitive systems) constitute joint cognitive

systems (JCS). This point is also emphasized by a

lot of usability and safety problems that were

reported in the literature [6].

However, traditional software and systems

engineering have proven inadequate to fully address

the changed design environment and requirements.

Human-computer interaction (HCI) and human

factors engineering have failed to provide a good

solution to these demands. As an alternative, a new

discipline called cognitive systems engineering (CSE)

has emerged in order to provide concepts, models,

and frameworks that help designers cope with these

new design demands in a more effective way. This

paper introduces the basic concepts and principles of

CSE and discusses how they can be applied to the

design of software-based systems.

2. Overview of CSE

CSE was originally concerned with analysis,

design, and evaluation of complex socio-technical

systems that need to be monitored and supervised

by human operators in real time [11]. It has provided

concepts, models, and frameworks for analyzing,

designing, and evaluating usable, safe systems for

supporting human operators’ cognitive activities. It is

a new branch of systems engineering with the

purpose of enhancing the performance of JCS, paying

particular attention to human operators’ cognitive

performance. As software has become more and

more a critical part of complex socio-technical

systems, CSE is now regarded as one of viable

disciplines for designing software-based systems.

Several disciplines have influenced the development

of CSE, which include human factors engineering,

HCI, cognitive psychology, artificial intelligence,

information science, and software engineering. To

solve a practical design and evaluation problem, CSE

has borrowed concepts and methods from those

disciplines and unified them by employing systems

engineering viewpoint. Although CSE can be applied

to any kind of problems where information and

knowledge processing is critical issue, we can

summarize the typical research topics of CSE as

follows:

- Analysis of cognitive works in complex systems

- Design of human-computer interfaces in complex

systems

- Operation of safety-, mission-critical complex

systems (designing automation that human can

easily understand, designing training systems,

minimizing human errors and enhancing system

safety, and accident analysis and investigation)

- User interface design and usability for electronic

consumer products and software

- Human-computer cooperative information system

- Cognitive issues in product innovation and knowledge

management

- Computer supported cooperative work

3. CSE Approach to Software-Based

Systems

Figure 1 shows a model of CSE research

activities. As stated previously, all of the research

activities of CSE concern with analysis, design, and

evaluation of complex socio-technical systems. The

upper part (rectangle) of Figure 1 shows that these

systems are generally composed of humans,

information artefacts, and (technical) systems that

humans should interact with. In these systems, there

are several types of interactions: human-human

interaction, human interaction with information

artefacts, human-systems interaction through

information artefacts. All of these interactions can be

explained in the context of JCS.



대한안전경영과학회지 제 14권 제 3 호 2012년 9월 231

<Figure 1> Model of CSE Research Activities

To develop these interactions, systems designers

need to consider four different factors in a collective

manner, which include technological factors, social

factors, organizational factors, and cultural factors.

And this development can be explained from the

perspective of a life cycle that includes conception &

analysis, architecting & design, implementation &

evaluation, and operation & improvement.

Like other engineering disciplines, CSE research

activities can be categorized into three groups:

scientific research, engineering development and

operation, and methodology and framework connecting

the two activity groups. Scientific research activities

of CSE aim at developing various theoretical models

that can explain JCS. Typical models include user

(cognitive) model, task model, work domain model,

and context model. Engineering development activities

are concerned with developing actual information

artefacts comprising JCS, which contain information

display, database, procedure, automation, and so on.

However, the design of information artefacts

should be interpreted as a part for developing three

types of interactions (human-human, human-artefact,

human-systems). Methodology and framework develop

ment activities bridge the gap between scientific

models and design items [3-4]. They attempt to

offer a practical set of processes, methods,

guidelines, and so on to develop information artefacts

based on the theoretical models found in scientific

research activities; thus they make the process of

developing information artefacts more systematic.

CSE approach to designing software-based

systems needs to be considered in the context of

Figure 1. From the perspective of CSE, design of

software-based systems implies that several items

should be simultaneously designed in order to

optimize the performance of JCS. In other words,

CSE approach emphasizes the concept of JCS that

could not be found in other approaches.



소프트웨어 기반 시스템을 설계하는 새로운 접근법으로서의 인지시스템공학 함 동 한232

Development of high-quality JCS needs several

kinds of models as a basis for development, as

shown in the left of Figure 1. To help designers to

make use of the models as well as to build them,

CSE offers comprehensive frameworks or

methodologies and problem-oriented methods and

techniques.

The first and primary problems that we should

address when applying CSE to the design of

software-based systems are what to analyze and

how to analyze them-requirements identification and

specification [5]. CSE approach leads designers to

identify several analysis dimensions that conceptually

constitute JCS and thus to identify design

requirements on the basis of these dimensions.

Typical analysis dimensions claimed by CSE

frameworks are as follows [1, 6-7, 11-12]:

- Human users’ cognitive capabilities and limitations

(how they think, learn remember, use technology,

interpret environment, form goals, work in teams)

- Structural, behavioural, and functional characteristics of

work domain (system) that users should interact with

- Tasks that users should conduct

- Strategies that users use to achieve a task

- Collaboration works to achieve a task

- Functionalities of available information technology

With regard to the problem of how to analyze, the

order of analyzing the above analysis dimensions

should be specified in consideration of semantic

relations among workproducts resulting from the

analysis of each dimension. There are only a few

CSE frameworks that address both of the problems

(what to analyze and how to analyze) in an

integrated manner. Of those, cognitive work analysis

(CWA) framework has gained much attention in that

it is based on ecological approach and offers several

tools for modelling each analysis dimension. The

next section explains CWA framework and describes

two examples on the application of CWA to

software-based systems.

4. Application of CWA

CWA is a formative analysis framework to human

work analysis that predicts how works can be done,

rather than how works should be done or how

works are actually done. The purpose of CWA is to

identify intrinsic work constraints shaping human

goal-directed, adaptive behaviour.

4.1 Key Concepts and Phases of CWA

CWA advocates that human work analysis should

be a prerequisite for designing software-based

systems. It emphasizes that the purpose of human

work analysis should be to identify intrinsic work

constraints influencing the degree of freedom of

human work activities. These intrinsic constraints

are interpreted as design requirements. To analyze

these constraints, CWA claims that analysis

activities should consist of five phases. Table 1

explains the purpose of each of the five phases and

modelling tools that can be effectively used in each

phase.

<Table 1> Summary of CWA Phases

Phase Purpose of analysis Modelling tool

Work domain analysis
To identify purposes of systems, and functions and their

relations designed to achieve the purpose
Abstraction hierarchy

(Control) Task analysis

To Understand characteristics of tasks needed to

perform the identified functions in terms of knowledge and

cognitive process

Decision ladder

Strategy analysis
To understand how to perform the identified tasks in

more detailed way
Information flow map

Social organization

analysis

To understand the social organizational relations between

actors (humans or automation)
All of the above three

Human competency

analysis

To understand cognitive competencies that human need

to have to perform the tasks

Skill-Rule-Knowledge

taxonomy



대한안전경영과학회지 제 14권 제 3 호 2012년 9월 233

Detailed explanation of the modelling tools is

beyond the scope of this paper. In this paper, only

abstraction hierarchy (AH) is described briefly, as it

is related to two examples of CWA application to be

explained later. AH is a multi-level knowledge

representation framework for modelling the functional

structure of a particular work domain or system [11].

Although there is no absolute rule for the number of

abstraction levels, five levels are usually employed

for analyzing complex socio-technical systems or

software-based systems. Figure 2 explains the five

abstraction levels and properties represented by each

level. One important feature of AH is that it is

defined by means-ends relationships between adjacent

levels, with higher levels describing purpose-related

functional information and lower levels describing

more physically implemented information [11]. AH is

differentiated from the hierarchical levels

characterized by physical part-whole decomposition

that is a typical of engineering analysis methods.

Another advantage of using AH as a modelling tool

for system analysis is that it is device-independent,

event-independent, and psychologically relevant [13].

Thus it can be widely used for any kind of work

domain or system. Figure 3 shows abstraction-

decomposition space that combines AH dimension and

part-whole dimension. CWA advocates that designers

need to examine the invariants of a work domain

(system), which can influence the degree of freedom

of human workers’ activities, by using the matrix

shown in Figure 3.

Means-Ends relations Property represented

Functional purpose the purpose for which the system was designed

Abstract function
the causal structure of the process in terms of mass, energy, information or

value flows

General function the basic functions that the system was designed to achieve

Physical function the characteristics of the components and their interconnections

Physical form the appearance and spatial location of those components

<Figure 2> Five Levels of AH

Whole-part

Goal-means
Totals system Subsystem Functional unit Subassembly Component

Functional

Purpose
Why

Abstract

function,

priority,

measure

Why What

General

function
What How

Physical

function
How

Physical form

<Figure 3> Abstraction-Decomposition Space



소프트웨어 기반 시스템을 설계하는 새로운 접근법으로서의 인지시스템공학 함 동 한234

<Figure 4> Generation of Scenarios Based on Abstraction Structure of Software Functions

4.2 Two Examples of CWA Application

Application of CWA to the design and evaluation

of software-based system has been increasing. Here,

two examples are introduced, which focused on the

analysis of a work domain by the use of AH.

One example is concerned with requirements

specification based on AH concept [10]. One reason

for low productivity of software development is that

requirements specifications that designers have to

work with are not tailored to support their problem

solving methods and strategies [9]. Software

development is a cognitively complex process that

needs a series of problem-solving tasks.

Specifications used in problem-solving tasks are

made to provide assistance in this process. Thus it

can be said that requirements specifications in

software development process should help software

designers solve their problems effectively. However,

cognitive psychologists have claimed that the

representation of the problem provided to problem

solvers can affect their performance. The

representations available to problem solvers can

either degrade or enhance performance. If their

content, structure, and form are not built reflecting

the cognitive characteristics of problem solvers, they

can degrade the problem solving performance.

Requirements specifications in software development

can be regarded as the representations of the

problem domain and tasks for which software should

be developed. Therefore, requirements specifications

should be constructed in a way that they reflect the

cognitive characteristics of software designers as

problem solvers.

However, a requirements specification can be used

by multiple users. Additionally, they have different

mental models of the problem and tasks they have

to deal with, and their problem solving methods and

strategies can be various. Thus, good requirements

specifications should support all the possible methods

and strategies that can be employed by their

multiple users. Leveson [10] pointed out that one

main reason why many software engineering tools

and environments are not readily accepted or easily

used is that they imply a particular mental model

and force potential users to accept through problems

using only one or a very limited number of

strategies that are usually preferred by the designer

of the tool. Thus she claimed that AH concept can

be effectively used for specifying requirements in

software development because the AH-based

representation of a problem domain is a domain

knowledge representation that can be used for any

tasks and strategies. She called this approach, which

applies AH concept for requirements specifications,



대한안전경영과학회지 제 14권 제 3 호 2012년 9월 235

as ‘intent specifications’.. To demonstrate the use of

the intent specification approach, Leveson [10]

applied AH concept to identifying and specifying

design requirements of Traffic Alert and Collision

Avoidance System to be used in US air traffic

control system and found that this approach can be

a useful way for supporting software development

activities.

Another example is about the evaluation of

software usability using scenarios organized by AH

concept [8]. Scenario-based analysis has been much

used in software engineering community. In spite of

its widespread applications, it has two critical

drawbacks. First, there is no systematic process of

generating and using scenarios. Second, scenario-

based analysis has a problem of incompleteness in

dealing with the functions of software. To resolve

these problems, Kwon et al. [8] proposed a new

method for generating and using scenarios organized

in terms of abstraction structure of software and

conducted a case study for testing the applicability

of the method in a word processing program

developed by a Korean company. Figure 4 shows the

structure of the proposed method.

As shown in Figure 4, they claimed that two

types of scenarios need to be differentiated.

High-level scenarios are concerned with the

semantics of tasks that are characterized by the

functional features of software. More specifically, the

semantics of tasks contain task goals, task

information structure organized by menu structure,

and task sequences. For example, ‘printing a file in a

PDF format’ can be a high-level scenario. In this

scenario, the main issue is what functions of

software can be used to achieve the goal of a task.

The task ‘printing a file in a PDF format’ can be

done by two functions: ‘save as’ and ‘print’.

Low-level scenarios are about detailed operations to

achieve a task that are related to visible user

interface objects of software. In the scenario above,

the function ‘print’ for the task ‘printing a file in an

PDF format’ can be done by three ways: executing a

menu element, pressing a shortcut key, and clicking

a button. This method claimed that, to generate

high-level scenarios, function-control matrix and

function order diagram should be developed based on

the abstraction structure of software functions.

Function-control matrix explicitly shows the relations

between the functions at the two abstraction levels:

physical function and generalized function. Function

order diagram represents the temporal relationships

between functions needed to achieve a task.

This method consists mainly of three phases:

analysis of the abstraction structure of software

functions, generation of high-level scenarios by

using function-control matrix and function order

diagram, and generation of low-level scenarios by

associating interface objects with the functions

identified in the high-level scenarios. In the context

of Figure 1, this example can be classified to a

scientific study for developing a system and task

model, as well as a methodological study for

developing a method and process for usability

evaluation.

5. Conclusion

This paper introduced CSE as a new discipline for

developing software-intensive systems. Complex

socio-technical characteristics of software-based

systems need a new design framework that supports

designers’ activities with human-centred perspective.

CSE advocates that designers need to have the

concept of JCS to implement cognitively

well-engineered software-based systems. CSE has

developed several comprehensive frameworks and

problem-oriented methods and techniques for

developing an effective JCS. Of those, CWA is

regarded as one of the most promising frameworks.

We outlined the CWA and explained how to apply

CWA to the problem of designing software-based

systems.

The concepts and modeling tools of CWA would

be effectively used to design usable and safe

software-intensive systems, together with traditional

software and systems engineering methodologies.

CWA framework emphasizes ecological approach to

analyzing systems, which begins from work domain

analysis through task analysis to users’ cognitive

analysis. Thus work domain analysis results usually

becomes the bases for designing software-intensive



소프트웨어 기반 시스템을 설계하는 새로운 접근법으로서의 인지시스템공학 함 동 한236

systems. The detailed users’ task analysis results

offer a good understanding of user’s task

requirements. This implies that CWA framework can

be particularly useful for requirements analysis and

modeling and systems quality evaluation in the

phases of systems development life cycle.

Although CSE has much potential as a new

approach to designing software-based systems, there

is still a lack of application case studies. Therefore

the application of CSE frameworks and methods to

various kinds of software-based systems remains a

further research. As another future research topic,

more detailed methodological process should be

developed to make it easier to apply CSE to real

design problems.

6. References

[1] Bisantz, Ann M., Emile Roth, Bart Brickman,

Laura Lin Goesbee, Larry Hettinger, and James

McKinney. (2003), “Integrating Cognitive Analyses

in a Large-Scale System Design Process.”,

International Journal of Human-Computer Studies.

58(2): 177-206.

[2] Boehm, Barry. (2008). “Making a Difference in the

Software Century.”, IEEE Computer. 41(3): 32-38.

[3] Carroll, John (Eds.). (2003). HCI Models, Theories,

and Frameworks, Morgan Kaufmann.

[4] Diaper, Dan and Neville Stanton (Eds.). (2004). The

Handbook of Task Analysis for Human-Computer

Interaction, Lawrence Erlbaum.

[5] Ernst, Neil, Greg Jamieson, and John Mylopoulos.

(2006). “Integrating Requirements Engineering

and Cognitive Work Analysis: A Case Study.”,

Proceedings of the 4th Annual Conference on

Systems Engineering Research.

[6] Hollnagel, Erik and David Woods. (2006). Joint

Cognitive Systems: Foundation of Cognitive

Systems Engineering, CRC Press.

[7] Hori, Shinichiro, Kim Vicente, Yujiro Shimizu,

and Isao Takami. (2001). “Putting Cognitive

Work Analysis to Work in Industry Practice:

Integration with ISO13407 on Human-Centred

Design.”, Proceedings of the Human Factors and

Ergonomics Society 45th Annual Meeting.

[8] Kwon, Gyuhyun, Dong-Han Ham, and Wan Chul

Yoon. (2007). “Evaluation of Software Usability

Using Scenarios Organized by Abstraction

Structure.”, Proceedings of European Conference

on Cognitive Ergonomics.

[9] Lauesen, Sauren. (2002). Software Requirements.

Addison-Wesley.

[10] Leveson, Nancy. (2000). “Intent Specifications:

An Approach to Building Human-Centred

Specifications.”, IEEE Transactions on Software

Engineering. 26(1): 15-35.

[11] Rasmussen, Jens, Annelise Pejtersen, and L. P.

Goodstein. (1994). Cognitive Systems

Engineering, John & Wiley Sons.

[12] Vicente, Kim. (1999). Cognitive Work Analysis,

Lawrence Erlbaum Associates.

[13] Vicente, Kim. (2006). “Cognitive Engineering: A

Theoretical Framework and Three Case

Studies.”, International Journal of Industrial and

Systems Engineering. 1(2): 168-181.

저 자 소 개

함 동 한

현재 전남대학교 산업공학과 조

교수. 인하대 산업공학과 공학사,

KAIST 산업공학과 공학석사 및

공학박사를 취득하였음. 2001 ~

2005년 ETRI 선임연구원 재직.

2005 ~ 2012년 영국 미들섹스대

학교 공학 및 정보과학부 종신연

구교원 재직.

연구 분야는 인지시스템공학, 지식서비스공학, 서비스

과학, 인간-컴퓨터 상호작용, 시스템 안전공학 등

주소: 광주광역시 북구 용봉로 77 전남대학교 공과대학

산업공학과


