QA 73 | 3433 A| A 144 A 3 & 2012 9€ 229

Cognitive Systems Engineering as a New Approach to

Designing Software-Based Systems

Dong-Han Ham'
"Dept. of Industrial Engineering, Chonnam National University

Abstract

LrEgo] 7Iuke] Al AARe A AARE aejsol s @aEo] thdsiAHA Alzgl AAZE A of
HA L ek TRt Al @Bl EASHAT AREALe] 54 B AR ARETbs R ARVES] 54 sol #4
Al 94w IhpEnh Eg FR7|so] sk A °]7hjr Alz=gle] o Atgo]l A IAH 5SS AYA H
At wEpA AR 3L EEAo]UA P AZE o] VW] AlxElS Eely] fleiMs Al AARL
AREALE] Q14421 J‘?ﬁ”\}fé 2 OEe] ANE A= Aol Al]342 ‘:}% ? Aofof gk et A
Egjo] &8k Al2gl el gl - H A A TolA] AEAQ) A" A WHE o] g AR A
s gHoz AYsh=dl dAF ATk 1 itz 1 V\‘%}%‘Q}(Cognitive systems engineering; CSE)
& AFAe] AAESS nfg o R AxESJo] 7|Whe] EXgh Al Aol AAIRbY] &S AAAoR
TokE g A 8 Ad e Algelsa Aok CSEx] Abdel AAztos 7hA] B Alojafjof sl &
ek Ak A Algl(d ke s B SEkA|) o] A AA 2 JrkE 9E Hls e shEelth 1evt
CSEolA Algshe ol&4 3 e Zedeas AZEo] 7|§he] AlAgS AAlsks Hlolle #F-8&shA 28

k7 A CSE®| &7+s olF= A g % 43& el AT EY
of 719k Az=wl MACle] B8/ L 1 ek o,
Keywords : Cognitive Systems Engineering, Cognitive Work Analysis, Software Requirements,

Requirements Engineering, Socio-technical Systems Engineering

WS
A

&5 ole FRE FeAE 23 A o wRe
=i 1S

difficult [1]. There is a range of factors that system
designers should consider through whole phases of
development life cycle. Additionally, in comparison
with traditional software development focusing on
software program, design of software-based systems

1. Introduction

Software has become the backbone of modern
industrial systems (e.g. nuclear power plants (NPPs),
air traffic control, and intensive care unit) [2]. As
such software-based systems are increasingly
complex, their design and evaluation is accordingly

includes other design items as well as software

program

gl Lo fH] XY 95t AFHY S (FAHST: 2012-0730)
5] Al B ogxwg 77 Adgen Faige Aoz

M - P: 016-417-4607, E-mail: donghan.ham@gmail.com; dhham@jnu.ac.kr
2012 7€ 29 A 201249 99 3 A E; 20129 9€ 4Y AAEA

230 AZEYY 78t A2HS AAGE RS HE

o2A 9 AXA£YF%

T

For example, design of information systems
operated in the control room of NPPs should be
accompanied by the design of task procedure,
training system, staffing, and alarm system.

Another main characteristic of software-based
systems is that the interaction between systems and
users is very cognitive [12]. This enforces system
designers to take into account cognitive
characteristics of users and to regard software—based
systems as artificial cognitive systems. Designers
need to have a viewpoint that human (natural
cognitive system) and software-based systems
(artificial cognitive systems) constitute joint cognitive
systems (JCS). This point is also emphasized by a
lot of wusability and safety problems that were
reported in the literature [6].
traditional
engineering have proven inadequate to fully address

However, software and systems
the changed design environment and requirements.
interaction (HCI)

factors engineering have failed to provide a good

Human-computer and human
solution to these demands. As an alternative, a new
discipline called cognitive systems engineering (CSE)
has emerged in order to provide concepts, models,
and frameworks that help designers cope with these
new design demands in a more effective way. This
paper introduces the basic concepts and principles of
CSE and discusses how they can be applied to the
design of software-based systems.

2. Overview of CSE

CSE was orginally concerned with analysis,
design, and evaluation of complex socio—technical
systems that need to be monitored and supervised
by human operators in real time [11]. It has provided
concepts, models, and frameworks for analyzing,
designing, and evaluating usable, safe systems for
supporting human operators’ cognitive activities. It is
a new branch of systems engineering with the
purpose of enhancing the performance of JCS, paying
particular attention to human operators cognitive
performance. As software has become more and
more a critical part of complex socio—technical
systems, CSE is now regarded as one of viable

disciplines for designing software-based systems.
Several disciplines have influenced the development

of CSE, which include human factors engineering,

artificial

information science, and software engineering. To

HCI, cognitive psychology, intelligence,
solve a practical design and evaluation problem, CSE
has borrowed concepts and methods from those
disciplines and unified them by employing systems
engineering viewpoint. Although CSE can be applied
to any kind of problems where information and
knowledge processing is critical issue, We can
summarize the typical research topics of CSE as
follows:

- Analysis of cognitive works in complex systems

— Design of human—computer interfaces in complex
systems

— Operation of safety-, mission—critical complex
systems (designing automation that human can
easily understand, designing training systems,
minimizing human errors and enhancing system
safety, and accident analysis and investigation)

— User interface design and usability for electronic
consumer products and software

— Human—computer cooperative information system

- Cognitive issues in product innovation and knowledge
managerment

- Computer supported cooperative work

3. CSE Approach to Software-Based
Systems

Figure 1 shows a model of CSE research
activities. As stated previously, all of the research
activities of CSE concern with analysis, design, and
evaluation of complex socio-technical systems. The
upper part (rectangle) of Figure 1 shows that these
systems are generally composed of humans,
information artefacts, and (technical) systems that
humans should interact with. In these systems, there
are several types of interactions: human-human
interaction, human interaction with information
artefacts, through
information artefacts. All of these interactions can be

explained in the context of JCS.

human-systems interaction

o3k 7 g 78 3] %]

A 144 A 3 & 2012 9€ 231

Social Factors

Organizational Factors

Information
Artifacts

Information [EESS
Artifacts with)
Technological Factors

Systems
(which
humans
should

interact

$40430 [BJnYND

User Model
System Model

Accident Model

Scientific

i

Design

Methodology &
Research Framework

Evalunarion

Ay

,l Information Display |

Alarm System

Procedure
Information Aids
Automation
Development —
& Staffing

Engineering

Operation

Training System

!

erfiormance
ode

| Method | | Process I

sLe
Performance
Management System
Accident
Investigation
\I Safety Assessment I

I Quality Model " Metrics I

<Figure 1> Model of CSE Research Activities

To develop these interactions, systems designers
need to consider four different factors in a collective
manner, which include technological factors, social
factors, organizational factors, and cultural factors.
And this development can be explained from the
perspective of a life cycle that includes conception &
analysis, architecting & design, implementation &
evaluation, and operation & improvement.

Like other engineering disciplines, CSE research
activities can be categorized into three groups:
scientific research, engineering development and
operation, and methodology and framework connecting
the two activity groups. Scientific research activities
of CSE aim at developing various theoretical models
that can explain JCS. Typical models include user
(cognitive) model, task model, work domain model,
and context model. Engineering development activities
are concerned with developing actual information
artefacts comprising JCS, which contain information

display, database, procedure, automation, and so on.

However, the design of information artefacts
should be interpreted as a part for developing three
types of interactions (human-human, human-artefact,
human-systems). Methodology and framework develop
ment activities bridge the gap between scientific
models and design items [3-4]. They attempt to
offer a practical set methods,
guidelines, and so on to develop information artefacts
based on the theoretical models found in scientific
research activities; thus they make the process of

of processes,

developing information artefacts more systematic.

CSE approach to designing software—based
systems needs to be considered in the context of
Figure 1. From the perspective of CSE, design of
software-based systems implies that several items
should be simultaneously designed in order to
optimize the performance of JCS. In other words,
CSE approach emphasizes the concept of JCS that

could not be found in other approaches.

232 AZEYY 78t A 2HS AAFE RS HE

o2A 9 AXA£YF%

T

Development of high—quality JCS needs several
kinds of models as a basis for development, as
shown in the left of Figure 1. To help designers to
make use of the models as well as to build them,
CSE offers
methodologies and problem-oriented methods and

comprehensive frameworks — or
techniques.

The first and primary problems that we should
address when applying CSE to the design of
software-based systems are what to analyze and
how to analyze them-requirements identification and
specification [5]. CSE approach leads designers to
identify several analysis dimensions that conceptually
JCS and thus to
requirements on the basis of these dimensions.

constitute identify design
Typical analysis dimensions claimed by CSE
frameworks are as follows [1, 6-7, 11-12]:

- Human users cognitive capabilities and limitations
(how they think, learn remember, use technology,
interpret environment, form goals, work in teams)

- Structural, behavioural, and functional characteristics of

work domain (systemn) that users should interact with

- Tasks that users should conduct

— Strategies that users use to achieve a task

- Collahoration works to achieve a task

- Functionalities of available information technology

With regard to the problem of how to analyze, the
order of analyzing the above analysis dimensions
should be specified in consideration of semantic
relations among workproducts resulting from the

analysis of each dimension. There are only a few

CSE frameworks that address both of the problems
(what to analyze and how to analyze) in an
integrated manner. Of those, cognitive work analysis
(CWA) framework has gained much attention in that
it 1s based on ecological approach and offers several
tools for modelling each analysis dimension. The
next section explains CWA framework and describes
two examples on the applicaion of CWA to
software—based systems.

4, Application of CWA

CWA is a formative analysis framework to human
work analysis that predicts how works can be done,
rather than how works should be done or how
works are actually done. The purpose of CWA is to
identify intrinsic work constraints shaping human
goal—directed, adaptive behaviour.

4.1 Key Concepts and Phases of CWA

CWA advocates that human work analysis should
be a prerequisite for designing software-based
systems. It emphasizes that the purpose of human
work analysis should be to identify intrinsic work
constraints influencing the degree of freedom of
human work activities. These intrinsic constraints
are interpreted as design requirements. To analyze
CWA
activities should consist of five phases. Table 1

these constraints, claims that analysis
explains the purpose of each of the five phases and
modelling tools that can be effectively used in each

phase.

<Table 1> Summary of CWA Phases

Phase Purpose of analysis

Modelling tool

Work domain analysis

To identify purposes of systems, and functions and their
relations designed to achieve the purpose

Abstraction hierarchy

(Control) Task analysis

To Understand characteristics of tasks needed to
perform the identified functions in terms of knowledge and
cognitive process

Decision ladder

Strategy analysis

To understand how to perform the identified tasks in
more detailed way

Information flow map

Social organization
analysis

To understand the social organizational relations
actors (humans or automation)

between All of the above three

Human competency
analysis

To understand cognitive competencies that human need
to have to perform the tasks

Skill-Rule-Knowledge
taxonomy

o §ebd 7 o 7431 3] A

A 144 A 3 & 2012 9€ 233

Detailed explanation of the modelling tools is
beyond the scope of this paper. In this paper, only
abstraction hierarchy (AH) is described briefly, as it
1s related to two examples of CWA application to be
explained later. AH is a multi-level knowledge
representation framework for modelling the functional
structure of a particular work domain or system [11].
Although there 1s no absolute rule for the number of
abstraction levels, five levels are usually employed
for analyzing complex socio-technical systems or
software-based systems. Figure 2 explains the five
abstraction levels and properties represented by each
level. One important feature of AH is that it is
defined by means—ends relationships between adjacent
levels, with higher levels describing purpose-related
functional information and lower levels describing

more physically implemented information [11]. AH is
differentiated from the hierarchical
characterized by physical part-whole decomposition

levels

that is a typical of engineering analysis methods.
Another advantage of using AH as a modelling tool
for system analysis is that it is device-independent,
event-independent, and psychologically relevant [13].
Thus it can be widely used for any kind of work
domain or system. Figure 3 shows abstraction—
decomposition space that combines AH dimension and
part-whole dimension. CWA advocates that designers
need to examine the invariants of a work domain
(system), which can influence the degree of freedom
of human workers' activities, by using the matrix
shown in Figure 3.

Means-Ends relations

Property represented

Functional purpose

the purpose for which the system was designed

Abstract function

the causal structure of the process in terms of mass, energy, information or

value flows

General function

the basic functions that the system was designed to achieve

Physical function

the characteristics of the components and their interconnections

Physical form

the appearance and spatial location of those components

<Figure 2> Five Levels of AH

‘Whole—part

Totals system
Goal-means v

Subsystem

Functional unit | Subassembly Component

Functional

Wh;
Purpose v

Abstract \

function, \

.. Why What
priority,

measure \\

General ~

. What
function

"

How

Physical
function

N

How

Physical form

<Figure 3> Abstraction-Decomposition Space

234 AZEY 78t A 2HS AAFE RS HE

o2A 9 AXA£YF%

T

Generation of high-level scenarios
| Identification of functional purpose (FP) |\
v

| ldentification of priority measures and values (AF) |

| Identification of purpose-related functions (GF) |
—

| Development of Function-control matrix |

‘v'

| Iidentification of object-related functions (PF) |

| Development of function order diagram

—_

Development of high-level scenarios

w
=
=]
=
[T
=
=
@
=
[
£
(=]
w
—
(=]
w
w
=
=]
c
o
r
=

—

iy

Generation of low-level scenarios

Identification of interface objects (P)

v

Development of low-level scenarios

<Figure 4> Generation of Scenarios Based on Abstraction Structure of Software Functions

4.2 Two Examples of CWA Application

Application of CWA to the design and evaluation
of software-based system has been increasing. Here,
two examples are introduced, which focused on the
analysis of a work domain by the use of AH.

One example is concerned with requirements
specification based on AH concept [10]. One reason
for low productivity of software development is that
requirements specifications that designers have to
work with are not tailored to support their problem
solving methods and strategies [9]. Software
development is a cognitively complex process that
needs a

Specifications used in problem-solving tasks are

series of problem-solving tasks.
made to provide assistance in this process. Thus it
can be said that requirements specifications in
software development process should help software
designers solve their problems effectively. However,
claimed that the

representation of the problem provided to problem

cognitive psychologists have

solvers can affect their performance. The
representations available to problem solvers can
either degrade or enhance performance. If their
content, structure, and form are not built reflecting
the cognitive characteristics of problem solvers, they

can degrade the problem solving performance.

Requirements specifications in software development
can be regarded as the representations of the
problem domain and tasks for which software should
be developed. Therefore, requirements specifications
should be constructed in a way that they reflect the
cognitive characteristics of software designers as
problem solvers.

However, a requirements specification can be used
by multiple users. Additionally, they have different
mental models of the problem and tasks they have
to deal with, and their problem solving methods and
strategies can be various. Thus, good requirements
specifications should support all the possible methods
and strategies that can be employed by their
multiple users. Leveson [10] pointed out that one
main reason why many software engineering tools
and environments are not readily accepted or easily
used is that they imply a particular mental model
and force potential users to accept through problems
using only one or a very limited number of
strategies that are usually preferred by the designer
of the tool. Thus she claimed that AH concept can
be effectively used for specifying requirements in
because the AH-based
representation of a problem domain is a domain

software development

knowledge representation that can be used for any
tasks and strategies. She called this approach, which
applies AH concept for requirements specifications,

o §ebd 7 o 7431 3] A

A 144 A 3 & 2012 9€ 235

as ‘intent specifications’.. To demonstrate the use of
the intent specification approach, Leveson [10]
applied AH concept to identifying and specifying
design requirements of Traffic Alert and Collision
Avoidance System to be used in US air traffic
control system and found that this approach can be
a useful way for supporting software development
activities.

Another example is about the evaluation of
software usability using scenarios organized by AH
concept [8]. Scenario-based analysis has been much
used in software engineering community. In spite of
its widespread applications, it has two critical
drawbacks. First, there is no systematic process of
generating and using scenarios. Second, Scenario-
based analysis has a problem of incompleteness in
dealing with the functions of software. To resolve
these problems, Kwon et al. [8] proposed a new
method for generating and using scenarios organized
in terms of abstraction structure of software and
conducted a case study for testing the applicability
of the method in a word processing program
developed by a Korean company. Figure 4 shows the
structure of the proposed method.

As shown in Figure 4, they claimed that two
types of need to be differentiated.
High-level scenarios are concerned with the
semantics of tasks that are characterized by the
functional features of software. More specifically, the
of tasks task goals, task
information structure organized by menu structure,

scenarios

semantics contain
and task sequences. For example, ‘printing a file in a
PDF format’ can be a high-level scenario. In this
scenario, the main issue is what functions of
software can be used to achieve the goal of a task.
The task ‘printing a file in a PDF format’ can be
done by two functions: ‘save as and ‘print.
Low-level scenarios are about detailed operations to
achieve a task that are related to visible user
interface objects of software. In the scenario above,
the function ‘print’ for the task ‘printing a file in an
PDF format’ can be done by three ways: executing a
menu element, pressing a shortcut key, and clicking
a button. This method claimed that, to generate
high-level scenarios, function-control matrix and

function order diagram should be developed based on

the abstraction structure of software functions.
Function—control matrix explicitly shows the relations
between the functions at the two abstraction levels:
physical function and generalized function. Function
order diagram represents the temporal relationships
between functions needed to achieve a task.

This method consists mainly of three phases:
analysis of the abstraction structure of software
functions, generation of high-level scenarios by
using function—control matrix and function order
diagram, and generation of low-level scenarios by
associating interface objects with the functions
identified in the high-level scenarios. In the context
of Figure 1, this example can be classified to a
scientific study for developing a system and task
model, as well as a methodological study for
developing a method and process for usability
evaluation.

5. Conclusion

This paper introduced CSE as a new discipline for
developing software-intensive Complex
socio-technical

systems need a new design framework that supports

systems.
characteristics of software-based
designers’ activities with human—centred perspective.
CSE advocates that designers need to have the
concept of JCS to
well-engineered software-based systems. CSE has

implement cognitively
developed several comprehensive frameworks and
problem-oriented methods and techniques for
developing an effective JCS. Of those, CWA is
regarded as one of the most promising frameworks.
We outlined the CWA and explained how to apply
CWA to the problem of designing software-based
systems.

The concepts and modeling tools of CWA would
be effectively used to design usable and safe
software—intensive systems, together with traditional
software and systems engineering methodologies.
CWA framework emphasizes ecological approach to
analyzing systems, which begins from work domain
analysis through task analysis to users cognitive
analysis. Thus work domain analysis results usually
becomes the bases for designing software-intensive

236 AZEYY 78t A 2HS AAFE RS HE

CEERERERES

T

systems. The detailed users task analysis results
good understanding of
requirements. This implies that CWA framework can

offer a user's task
be particularly useful for requirements analysis and
modeling and systems quality evaluation in the
phases of systems development life cycle.

Although CSE has much potential as a new
approach to designing software-based systems, there
i1s still a lack of application case studies. Therefore
the application of CSE frameworks and methods to
various kinds of software-based systems remains a
further research. As another future research topic,
more detailled methodological process should be
developed to make it easier to apply CSE to real
design problems.

6. References

[1] Bisantzz, Ann M., Emile Roth, Bart Brickman,
Laura Lin Goesbee, Larry Hettinger, and James
McKinney. (2003), “Integrating Cognitive Analyses
in a LargeScale System Design Process.”,
International Journal of Human-Computer Studies.
53(2): 177-206.

[2] Boehm, Barry. (2008). “Making a Difference in the
Software Century.”, IEEE Computer. 41(3): 32-38.

[3] Carroll, John (Eds.). (2003). HCI Models, Theories,
and Frameworks, Morgan Kaufmann.

[4] Diaper, Dan and Neville Stanton (Eds.). (2004). The
Handbook of Task Analysis for Human—Computer
Interaction, Lawrence Erlbaum.

[5] Emst, Neil, Greg Jamieson, and John Mylopoulos.
(2006). “Integrating Requirements Engineering
and Cognitive Work Analysis: A Case Study.”,
Proceedings of the 4th Annual Conference on
Systems Engineering Research.

[6] Hollnagel, Erik and David Woods. (2006). Joint
Cognitive Systems: Foundation of Cognitive
Systems Engineering, CRC Press.

[7] Hori, Shinichiro, Kim Vicente, Yujiro Shimizu,
and Isao Takami. (2001). “Putting Cognitive
Work Analysis to Work in Industry Practice:
Integration with ISO13407 on Human-Centred
Design.”, Proceedings of the Human Factors and
Ergonomics Society 45th Annual Meeting.

[8] Kwon, Gyuhyun, Dong-Han Ham, and Wan Chul

Yoon. (2007). “Evaluation of Software Usability
Organized by Abstraction
Structure.”, Proceedings of European Conference

Using Scenarios

on Cognitive Ergonomics.
[9] Lauesen, Sauren. (2002). Software Requirements.
Addison-Wesley.

[10] Leveson, Nancy. (2000). “Intent Specifications:
An Approach to Building Human-Centred
Specifications.”, IEEE Transactions on Software
Engineering. 26(1): 15-35.

[11] Rasmussen, Jens, Annelise Pejtersen, and L. P.
Goodstein. (199%4).
Engineering, John & Wiley Sons.

[12] Vicente, Kim. (1999). Cognitive Work Analysis,
Lawrence Erlbaum Associates.

[13] Vicente, Kim. (2006). “Cognitive Engineering: A
Theoretical Framework and ‘Three Case
Studies.”, International Journal of Industrial and
Systems Engineering. 1(2): 168-181.

Cognitive Systems

A A 4N

IR

4
Sy AR 2

