DOI QR코드

DOI QR Code

Sequential magnetic resonance spectroscopic changes in a patient with nonketotic hyperglycinemia

  • Shin, Ji-Hun (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ahn, So-Yoon (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Shin, Jeong-Hee (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Sung, Se-In (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Jung, Ji-Mi (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Jin-Kyu (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Eun-Sun (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Hyung-Doo (Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Ji-Hye (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Chang, Yun-Sil (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Won-Soon (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 투고 : 2011.08.11
  • 심사 : 2012.03.20
  • 발행 : 2012.08.15

초록

Nonketotic hyperglycinemia (NKH) is a rare inborn error of amino acid metabolism. A defect in the glycine cleavage enzyme system results in highly elevated concentrations of glycine in the plasma, urine, cerebrospinal fluid, and brain, resulting in glycine-induced encephalopathy and neuropathy. The prevalence of NKH in Korea is very low, and no reports of surviving patients are available, given the scarcity and poor prognosis of this disease. In the current study, we present a patient with NKH diagnosed on the basis of clinical features, biochemical profiles, and genetic analysis. Magnetic resonance spectroscopy (MRS) allowed the measurement of absolute glycine concentrations in different parts of the brain that showed a significantly increased glycine peak, consolidating the diagnosis of NKH. In additional, serial MRS follow-up showed changes in the glycine/creatinine ratios in different parts of the brain. In conclusion, MRS is an effective, noninvasive diagnostic tool for NKH that can be used to distinguish this disease from other glycine metabolism disorders. It may also be useful for monitoring NKH treatment.

키워드

참고문헌

  1. Applegarth DA, Toone JR. Glycine encephalopathy (nonketotic hyperglycinemia): comments and speculations. Am J Med Genet A 2006;140: 186-8.
  2. Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad Ser B Phys Biol Sci 2008;84:246-63. https://doi.org/10.2183/pjab.84.246
  3. Perry TL, Urquhart N, MacLean J, Evans ME, Hansen S, Davidson GF, et al. Nonketotic hyperglycinemia. Glycine accumulation due to absence of glycerine cleavage in brain. N Engl J Med 1975;292:1269-73. https://doi.org/10.1056/NEJM197506122922404
  4. Zammarchi E, Donati MA, Ciani F, Pasquini E, Pela I, Fiorini P. Failure of early dextromethorphan and sodium benzoate therapy in an infant with nonketotic hyperglycinemia. Neuropediatrics 1994;25:274-6. https://doi.org/10.1055/s-2008-1073037
  5. Korman SH, Wexler ID, Gutman A, Rolland MO, Kanno J, Kure S. Treatment from birth of nonketotic hyperglycinemia due to a novel GLDC mutation. Ann Neurol 2006;59:411-5. https://doi.org/10.1002/ana.20759
  6. Applegarth DA, Toone JR. Nonketotic hyperglycinemia (glycine encephalopathy): laboratory diagnosis. Mol Genet Metab 2001;74:139-46. https://doi.org/10.1006/mgme.2001.3224
  7. Korman SH, Gutman A. Pitfalls in the diagnosis of glycine encephalopathy (non-ketotic hyperglycinemia). Dev Med Child Neurol 2002;44:712-20.
  8. Heindel W, Kugel H, Roth B. Noninvasive detection of increased glycine content by proton MR spectroscopy in the brains of two infants with nonketotic hyperglycinemia. AJNR Am J Neuroradiol 1993;14:629-35.
  9. Snider BJ, Du C, Wei L, Choi DW. Cycloheximide reduces infarct volume when administered up to 6 h after mild focal ischemia in rats. Brain Res 2001;917:147-57. https://doi.org/10.1016/S0006-8993(01)02822-0
  10. Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2002;48:949-58. https://doi.org/10.1002/mrm.10304
  11. Viola A, Chabrol B, Nicoli F, Confort-Gouny S, Viout P, Cozzone PJ. Magnetic resonance spectroscopy study of glycine pathways in nonketotic hyperglycinemia. Pediatr Res 2002;52:292-300. https://doi.org/10.1203/00006450-200208000-00024
  12. Hamosh A, Scharer G, Van Hove J. Glycine encephalopathy. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. $GeneReviews^{TM}$ [Internet]. Seattle: University of Washington, Seattle; 2002 Nov 14 [cited 2011 Jan 31]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1357/.
  13. Naas E, Zilles K, Gnahn H, Betz H, Becker CM, Schroder H. Glycine receptor immunoreactivity in rat and human cerebral cortex. Brain Res 1991;561:139-46. https://doi.org/10.1016/0006-8993(91)90758-N
  14. Foster AC, Kemp JA. Neurobiology. Glycine maintains excitement. Nature 1989;338:377-8. https://doi.org/10.1038/338377a0
  15. Kure S, Tada K, Narisawa K. Nonketotic hyperglycinemia: biochemical, molecular, and neurological aspects. Jpn J Hum Genet 1997;42:13-22. https://doi.org/10.1007/BF02766917
  16. McDonald JW, Johnston MV. Excitatory amino acid neurotoxicity in the developing brain. NIDA Res Monogr 1993;133:185-205.
  17. McDonald JW, Johnston MV. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Brain Res Rev 1990;15:41-70. https://doi.org/10.1016/0165-0173(90)90011-C
  18. Mourmans J, Majoie CB, Barth PG, Duran M, Akkerman EM, Poll- The BT. Sequential MR imaging changes in nonketotic hyperglycinemia. AJNR Am J Neuroradiol 2006;27:208-11.
  19. Press GA, Barshop BA, Haas RH, Nyhan WL, Glass RF, Hesselink JR. Abnormalities of the brain in nonketotic hyperglycinemia: MR manifestations. AJNR Am J Neuroradiol 1989;10:315-21.
  20. Suzuki Y, Ueda H, Toribe Y. Proton MR spectroscopy of nonketotic hyperglycinemia. No To Hattatsu 2001;33:422-5.
  21. Huisman TA, Thiel T, Steinmann B, Zeilinger G, Martin E. Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo-in vitro (ex vivo) correlation. Eur Radiol 2002;12: 858-61. https://doi.org/10.1007/s003300101073

피인용 문헌

  1. Evidence that glycine induces lipid peroxidation and decreases glutathione concentrations in rat cerebellum vol.395, pp.1, 2012, https://doi.org/10.1007/s11010-014-2118-z
  2. Index of Suspicion in the Nursery vol.16, pp.11, 2012, https://doi.org/10.1542/neo.16-11-e642
  3. Brain imaging in classic nonketotic hyperglycinemia: Quantitative analysis and relation to phenotype vol.42, pp.3, 2019, https://doi.org/10.1002/jimd.12072