DOI QR코드

DOI QR Code

Microwave-acceleration of Carboxamides Formation Using Water Soluble Condensing Agent DMT-MM or DCC

  • Cho, Nam-Sook (Department of Chemistry, Chungnam National University) ;
  • Jeon, Hye-Jin (Department of Chemistry, Chungnam National University) ;
  • Heo, Dong-Uk (Department of Chemistry, Chungnam National University)
  • Received : 2012.05.07
  • Accepted : 2012.07.20
  • Published : 2012.10.20

Abstract

Keywords

EXPERIMENTAL

All 1H NMR spectra were recorded on a Jeol 400 MHz Spectrometer and chemical shifts were recorded to tetramethylsilane (TMS) as an internal standard. Microwaveassistant reactions were performed with an initiator instrument (EXP EU, Biotage, 400W, 2450 MHz) Each microwave irradiation reaction was carried out in a 5 mm thickness Biotage vial sealed with a crimp cap. Reaction temperature were measured using infrared sensors on the outer surface of the traction vil. Products were purified by flash chromatography on 200-400 mesh ASTM 60 silica gel.

General method of formation of amides from substituted benzoic acid and 2-phenyethylamine or piperidine in presence of DMT-MM under microwave irradiation Acid (1.5 mmol), 2-phenylethylamine (1.65 mmol, 200 mg), DMT-MM (1.65 mmol, 457 mg) in MeOH (15 mL) were heated in microwave oven for 25 min. The end of reaction was checked with TLC. The solvent was removed under vacuum to give a crude product. The product was purified by column chromatography.

General Method of Formation of Amide From Substituted Benzoic Acid and 2-phenyethylamine or Piperidine in Presence of DMT-MM Under Thermal Heating

Acid (1.5 mmol), 2-phenylethylamine or piperidine (1.65 mmol), DMT-MM (1.65 mmol, 457 mg) in MeOH (15 mL) were refluxed for 3.5 hr. The end of reaction was checked with TLC. The solvent was removed under vacuum to give a crude product. The product was purified by column chromatography.

N-Phenethylbenzamide

Column chromatography: eluent, hexane : EA = 1 : 1, Rf 0.55, mp 112.4 ℃ (113-114 ℃ lit.15) yield = 88.9% (thermal reaction, reaction time 3.5 hr), yield = 99.0% (microwave irradiation reaction, reaction time 25 min.). 1H NMR: 7.70 (10(CH), m, 10H), 6.14 (NH, s, 1H), 3.73 (NCH2, t, 2H), 2.94 (NCH2 CH2, t, 2H)

N-Phenethyl-4-nitrobenzamid

Column chromatography: eluent, hexane : EA = 3 : 2, Rf 0.59, mp 149 ℃ (149.5-150.5 ℃ lit.15) yield = 81.5% (thermal reaction, reaction time, 3.0 hr), yield = 92.6% (microwave irradiation reaction, reaction time 25min.). 1H NMR: 8.27, 8.25, 7.84, 7.82 (4(CH), dd, 4H), 7.33 (C6H5, m, 5H), 6.13 (NH, s, 1H), 3.76 (NCH2, t, 2H), 2.96 (NCH2CH2, t, 2H).

N-phenethyl-4-methoxybenzamide

Column chromatography: eluent, hexane : EA = 3 : 2, Rf 0.64, mp 118 ℃ (117.5-118.5℃ lit.15) yield = 70.8% (thermal reaction, reaction time, 3.0 hr), yield = 91.7% (microwave irradiation reaction, reaction time 25 min.). 1H NMR: 8.27, 8.25, 7.84, 7.82 (4(CH), dd, 4H), 7.33 (C6H5, m, 5H), 6.13 (NH, s, 1H), 3.76 (NCH2, t, 2H), 2.96 (NCH2CH2, t, 2H)

N-Phenethyl-3-methoxybenzamide

Column chromatography: eluent, hexane : EA = 3 : 2, Rf 0.66, mp 112-113 ℃ (113-114 ℃ lit.19) yield = 72% (thermal reaction, reaction time, 3.0 hr), yield = 92.0% (microwave irradiation reaction, reaction time 25 min.). 1H NMR: 7.5 (9(CH), m, 9H), 6.10(NH, s, 1H), 3.82 (OCH3, s, 3H), 3.66 NCH2, t, 2H) 2.88 (NCH2CH2, t, 2H).

Phenyl-1-piperadinymethanone

Column chromatography: eluent, hexane : EA = 2 : 1, Rf 0.30, yield = 79.3% (thermal reaction, reaction time, 11.5 hr), yield = 91.7% (microwave irradiation reaction, reaction time 30 min.). 1H NMR: 7.34 (5(CH), m, 5H), 3.66 (NCH2, m, 2H), 3.29(NCH2, m, 2H), 1.62 (N(CH2)2(CH2)2, m, 4H), 1.46 ((CH2)2CH2, m, 2H).

4-Nitrophenyl-1-piperidinylmethanone

Column chromatography: eluent, hexane : EA = 2 : 1, Rf 0.23, yield = 59.6% (thermal reaction, reaction time, 24 hr), yield = 75.8% (microwave irradiation reaction, reaction time 30 min.). 1H NMR: 8.27, 8.20, 7.57, 7.55 (4(CH), dd, 4H), 7.27 (NH, s, 1H), 3.73 (NCH2, m, 2H), 3.29 (NCH2, m, 2H), 1.70 (N(CH2)2(CH2)2, m, 4H), 1.53 ((CH2)2CH2, m, 2H).

General Method of Formation of Amides from Substituted Benzoic Acid and Piperidine in in Presence of DCC Under Microwave Irradiation

Acid (2.5 mmol), piperidine (3 mmol), DCC (3.75 mmol) and pyridine (0.25 mmol) in dry THF (5 mL) were heated in a microwave oven at 120 ℃ (power 60 W) for 25 min. The end of reaction was checked with TLC. The solvent was removed under vacuum to give a crude product. The product was purified by column chromatography.

Phenyl-1-piperadinymethanone

Column chromatography: eluent, hexane : EA = 2 : 1, Rf 0.30, yield = 52.8% (thermal reaction, reaction time, 10 hr), yield = 63% (microwave irradiation reaction, reaction time 25 min.). 1H NMR: 7.34 (5(CH), m, 5H), 3.66 (NCH2, m, 2H), 3.29(NCH2, m, 2H), 1.62 (N(CH2)2(CH2)2, m, 4H), 1.46 ((CH2)2CH2, m, 2H).

4-Methoxybenzonyl-1-piperadinylmethanone

Column chromatography: eluent, hexane : EA = 2 : 1, Rf 0.23, yield = 50.4% (thermal reaction, reaction time 12 hr), yield = 60% (microwave irradiation reaction, reaction time 25 min.) 1HNMR: 7.37, 7.35, 6.91, 6.89 (4(CH), dd, 4H), 3.82 (OCH3, s, 3H), 3.45 (N(CH2)2, m, 4H), 1.67 (N(CH2)2 (CH2)2, m, 4H), 1.59 ((CH2)2CH2, m, 2H).

References

  1. Glynn, D.; Berier, D.; Woodward, S. Teterahedron Lett. 2008, 49, 5687. https://doi.org/10.1016/j.tetlet.2008.07.090
  2. Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 1082.
  3. Kishikawa, K; Yamamoto M.; Kohmoto, S.; Yamada, K. Synth. Commun. 1989, 993.
  4. Munakami, M.; Hayashi, M.; Tamura, N.; Hishino, Y.; Ito Y. Teterahedron Lett. 1996, 37, 7541. https://doi.org/10.1016/0040-4039(96)01712-1
  5. Chandrasekhar, S.; Mohamede, T.; Uma, G. Teterahedron Lett. 1997, 38, 8089. https://doi.org/10.1016/S0040-4039(97)10116-2
  6. Kamninski, Z. J.; Paneth, P.; Rudzinski, J. J. Org. Chem. 1998, 63, 4248. https://doi.org/10.1021/jo972020y
  7. Bailen, M.; Chichilla, R.; Dodsworth, D. J.; Najera, C. J. Org. Chem. 1999, 64, 8936. https://doi.org/10.1021/jo990660q
  8. van Leeuwen, S. H.; Quaedflieg, P. J. L. M.; Broxterman, Q. B.; Liskamp, R. M. J. Teterahedron Lett. 2002, 43, 9203. https://doi.org/10.1016/S0040-4039(02)02275-X
  9. Quelever, G.; Burlet, S.; Garino, C.; Pietrancosa, N.; Laras, Y.; Kraus, J.-L. J. Comb. Chem. 2004, 6, 695. https://doi.org/10.1021/cc034069p
  10. Wei, Z.; Yimin, L. QSAR & Comb. Sci. 2006, 25, 724. https://doi.org/10.1002/qsar.200640041
  11. Valeur, E.; Bradley, M. Tetrahedron 2007, 63, 8855. https://doi.org/10.1016/j.tet.2007.06.019
  12. De Wael, K.; Buschop, H.; De Smet, L.; Adriaens, A. Talanta 2008, 76, 309. https://doi.org/10.1016/j.talanta.2008.02.040
  13. Kunishima, M.; Kawachi, C.; Morita, J.; Terao, K.; Iwasaki, F.; Tani, S.; Tetrahedron 1999, 55, 13159. https://doi.org/10.1016/S0040-4020(99)00809-1
  14. Kunishima, M.; Kawachi, C.; Iwasaki, F.; Terao, K.; Tani, S.; Tetrahedron Lett. 1999, 40, 5327. https://doi.org/10.1016/S0040-4039(99)00968-5
  15. Kunishima, M.; Kawachi, C.; Hioki, K.; Terao, K.; Tani, S.; Tetrahedron 2001, 57, 1551. https://doi.org/10.1016/S0040-4020(00)01137-6
  16. Caddick, S. Tetrahedron 1995, 51, 10403. https://doi.org/10.1016/0040-4020(95)00662-R
  17. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225. https://doi.org/10.1016/S0040-4020(01)00906-1
  18. Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250. https://doi.org/10.1002/anie.200400655
  19. Kunishima, M.; Kawachi, C.; Morita J.; Terao, K.; Iwasaki, F.; Tani, S. Tetrahedron 1999, 55, 13159. https://doi.org/10.1016/S0040-4020(99)00809-1

Cited by

  1. Fast microwave-assisted conjugation of magnetic nanoparticles with carboxylates of biological interest vol.7, pp.31, 2017, https://doi.org/10.1039/C7RA00830A