Effect of Vinyl Ethylene Carbonate on Electrochemical Characteristics for Activated Carbon/Li4Ti5O12 Capacitors

활성탄/리튬티탄산화물 커패시터의 전기화학적 특성에 미치는 비닐에틸렌카보네이트의 영향

  • Kwon, Yong-Kab (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Choi, Ho-Suk (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Lee, Joong-Kee (Center for Energy Convergence, Korea Institute of Science and Technology)
  • 권용갑 (한국과학기술원 에너지융합센터) ;
  • 최호석 (한국과학기술원 에너지융합센터) ;
  • 이중기 (한국과학기술원 에너지융합센터)
  • Received : 2012.08.14
  • Accepted : 2012.08.30
  • Published : 2012.08.31


We employed the vinyl ethylene carbonate (VEC) as an electrolyte additive and investigated the effect of the electrolyte additive on the electrochemical performance in hybrid capacitor. The activated carbon was adopted as cathode material, and the $Li_4Ti_5O_{12}$ oxide was used as anode material. The electrolyte was prepared with the $LiPF_6$ salt in the mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate(EMC). We evaluated the electrochemical performance of the hybrid capacitor with increasing the amount of the VEC electrolyte additive, which is known as the remover of oxygen functional group and the stabilizer of the electrode by reducing the surface of electrode, and obtained the superior performance data especially at the addition of the VEC electrolyte additive of around 0.7 vol%. On the contrary, the addition of the VEC more than 0.7 vol% in the electrolyte leads to the degradation in electrochemical performance of hybrid capacitor, suggesting the increase of the side reaction from the excessive VEC additive. X-ray photoelectron spectroscopy (XPS) revealed that the addition of the VEC suppressed the formation of LiF component, which is known as the insulator, on the surface of electrode. The optimized addition of VEC exhibited the improved capacity retention around 82.7% whereas the bare capacitors without VEC additive showed the 43.2% of capacity retention after 2500 cycling test.


  1. E. F. Camacho, T. Samad, M. Garcia-Sanz, and I. Hiskens, 'Control for renewable energy and smart grids' The Impact of Control Technology, Control Systems Soc., 69 (2011).
  2. C. A. Nogueira and F. Delmas, 'New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni- Cd batteries by solvent extraction' Hydrometallurgy, 52, 267 (1999).
  3. T. OHZUKU, A. Ueda, M. Nagayama, Y. Iwakcihi, and H. Komori, 'Comparative study of Li$CoO_{2}$, $LiNi_{1/2}Co_{1}/_{2}O_{2}$ and $LiNiO_{2}$ for 4 volt secondary lithium cells' Electrochimica Acta., 38, 1159 (1993).
  4. J.-M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, 'Performance of Bellcore's plastic rechargeable Li-ion batteries' Solid State tonics, 86, 49 (1996).
  5. J. Shim, R. Kostecki, T. Richardson, X. Song, and K. A. Striebel, 'Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature' J. Power Sources, 112, 222 (2002).
  6. M. Winter and R. J. Brodd, 'What are batteries, fuel cells, and supercapacitors?" Chem. Rev., 104, 4245 (2004).
  7. A. Burke, 'R&D considerations for the performance and application of electrochemical capacitors' Electrochim. Acta, 53, 1083 (2007).
  8. G. G. Amatucci, F. Badway, A. D. Pasquier, and T. Zheng, 'An asymmetric hybrid nonaqueous energy storage cell' J. Electrochem. Soc., 148, 930 (2001).
  9. A. D. Pasquier, I. Plitz, S. Menocal, and G. Amatucci, 'A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications' J. Power Sources, 115, 171 (2003).
  10. J. R. Dahn and J. A. Seel, 'Energy and capacity projections for practical dual-graphite cells' J. Electrochem. Soc., 147, 899 (2000).
  11. A. Yoshino, T. Tsubata, M. Shimoyamada, H. Satake, Y. Okano, S. Mori, and S. Yata, 'Development of a lithium-type advanced energy storage device' J. Electrochem. Soc., 151, 2180 (2004).
  12. T. Aida, I. Murayama, K. Yamada, M. Morita, 'Analyses of capacity loss and improvement of cycle performance for a high-voltage hybrid electrochemical capacitor' J. Electrochem. Soc., 154, 798 (2007).
  13. S.-W.Woo, K. Dokko, H. Nakano, and K. Kanamura, 'Bimodal porous carbon as a negative electrode material for lithium-ion capacitors' Electrochemistry, 75, 635 (2007).
  14. N. Ogihara, Y. Igarashi, A. Kamakura, K. Naoi, Y. Kusachi, and K. Utsugi, 'Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries' Electrochim. Acta, 52, 1713 (2006).
  15. V. Khomenko, E. Pinero, and F. Beguin, 'High-energy density graphite/AC capacitor in organic electrolyte' J. Power Sources, 177, 643 (2008).
  16. K. Naoi and P. Simon, 'New materials and new configurations for advanced electrochemical capacitors' J. Electrochem. Soc., Interface 17, 34 (2008).
  17. M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, and Z. Ogumi, 'Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures' Langmuir, 20, 1348 (2004).
  18. M. Masatoshi, U. Satoshi, Y. Eriko, K. Keiji, and I. Shinji, 'Development of long life lithium ion battery for power storage' J. Power Sources, 101, 53 (2001).
  19. N. Kiyoshi, N. Ryosuke, M. Tomoko, and M. Hiroshi, 'Preparation of particulate $Li_{4}Ti_{5}O_{12}$ having excellent characteristics as an electrode active material for power storage cells' J. Power Sources, 117, 131 (2003).
  20. S. S. Zhang, K. Xu, and T. R. Jow, 'EIS study on the formation of solid electrolyte interface in Li-ion battery' Electrochim. Acta, 51, 1636 (2006).
  21. H. Schranzhofer, J. Bugajski, H. J. Santner, C. Korepp, K.-C. Moller, J. O. Besenhard, M. Winter, and W. Sitte, 'Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes' J. Power Soureces, 153, 391 (2006).
  22. S. S. Zhang, K. Xu, and T. R. Jow, 'Optimization of the forming conditions of the solid-state interface in the Liion batteries' J. Power Soureces, 130, 281 (2004).
  23. Y. Fu, C. Chen, C. Qiu, and X. Ma, 'Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries' J. Appl Electrochem, 39, 2597 (2009).
  24. W. Yao, Z. Zhang, J. Gao, J. Li, J. Xu, Z. Wang, and Y. Yang, 'Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries' Energy & Environ. Sci., 2, 1102 (2009).
  25. Y. Hu, W, Kong, H, Li, X, Huang, L, Chen, 'Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries' Electrochemistry Commu., 6, 126 (2004).
  26. L. Chen, K. Wang, X. Xie, and J. Xie, 'Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries' J. Power Sources, 174, 538 (2007).
  27. A. Schechter, D. Aurbach, and H. Cohen, 'X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions' Langmuir, 15, 3334 (1999).
  28. D. Bar-Tow, E. Peled, and L. Bursteinb, 'A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries' J. Electrochem. Soc., 146, 824 (1999).
  29. H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, 'Analysis of vinylene carbonate derived SEI layers on graphite anode' J. Electrochem. Soc., 151, 1659 (2004).
  30. A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T. M. Klapijtke, H. Zell, and W. Michaeli, 'Influence of fluorination on the properties of carbon fibres' J. Fluorine Chem., 84, 127 (1997).
  31. A. M. Andersson and K. Edstrom, 'Chemical composition and morphology of the elevated temperature SEI on graphite' J. Electrochem. Soc., 148, 1100 (2001).