DOI QR코드

DOI QR Code

Preparation and Photoelectrochemical Behavior of Cu2O/TiO2 Inverse Opal Heterojunction Arrays

  • Kim, Hyun-Sik (School of Chemical & Biological Engineering, Seoul National University) ;
  • Lee, Sang-Kwon (Department of Chemistry Education, Chonnam National University) ;
  • Kang, Soon-Hyung (Department of Chemistry Education, Chonnam National University)
  • Received : 2012.06.26
  • Accepted : 2012.08.08
  • Published : 2012.08.31

Abstract

The $Cu_2O/TiO_2$ inverse opal heterojunction arrays were developed by electrochemical deposition of $Cu_2O$ nanoparticles on $TiO_2$ inverse opal arrays. The $Cu_2O$ nanoparticles completely filled the inner pores of $TiO_2$ inverse opal film (prepared by liquid phase deposition with an average thickness of 400 nm) and covered the entire area; exhibiting high crystalline properties of anatase and cubic phase from $TiO_2$ and $Cu_2O$, respectively. From asymmetric current-voltage profile, it was noticeable that a heterojunction was well formed for charge transport from $Cu_2O$ to $TiO_2$ film resulting from the enhanced charge separation yield. In addition, increased photocurrent of 0.19 $mA/cm^2$ (versus 0.08 $mA/cm^2$ under dark condition) was obtained at -0.35 V from the heterojunction structure in the 0.5M $Na_2SO_4$ solution.

Keywords

References

  1. B. O'Regan and M. Grätzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_{2}$ films', Nature, London, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. T. M. Wang, S. K. Zheng, W. C. Hao and C. Wang, 'Studies on photocatalytic activity and transmittance spectra of $TiO_{2}$ thin films prepared by r.f. magnetron sputtering method' Surf. Coat. Technol., 155, 141 (2002). https://doi.org/10.1016/S0257-8972(02)00004-X
  3. N. Janke and A. Bieberle, 'Characterization of sputterdeposited WO3 and $CeO_{2}-x-TiO_{2}$ thinfilms for electrochromic applications' Thin Solid Films, 392, 134 (2001). https://doi.org/10.1016/S0040-6090(01)00898-7
  4. S. C. Lo, C. F. Lin, C. H. Wu, P. H. Hsieh, 'Capability of coupled CdSe/$TiO_{2}$ for photocatalytic degradation of 4-chlorophenol' J. Hazard Mater., B114, 183 (2004).
  5. S. H. Kang, H. S. Kim, J. Y. Kim and Y. E. Sung, 'Enhanced photocurrent of nitrogen-doped $TiO_{2}$ film for dye-sensitized solar cells' Mater. Chem. Phys., 124, 422 (2010). https://doi.org/10.1016/j.matchemphys.2010.06.059
  6. W. Lee, S. H. Kang, S. K. Min, Y. E. Sung and S. H. Han, 'Co-sensitization of vertically aligned $TiO_{2}$ nanotubes with two different sizes of CdSe quantum dots for broad spectrum' Electrochem. Comm., 10, 1579 (2008). https://doi.org/10.1016/j.elecom.2008.08.038
  7. M. K. Lee and T. H Shih, 'High photocatalytic activity of heterojunction of zinc selenide grown on nanoscaled titanium oxide' J. Electrochem. Soc., 154, P49 (2007). https://doi.org/10.1149/1.2434685
  8. W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. Baeck and E. W. McFarland, 'A $Cu2_{O}/TiO_{2}$ heterojunction thin film cathode for photoelectrocatalysis' Sol. Energy Mater. Sol. Cells, 77, 229 (2003). https://doi.org/10.1016/S0927-0248(02)00343-4
  9. Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan and G. H. Chen, 'Fabrication of $Cu_{2}O/TiO_{2}$ nanotube heterojunction arrays and investigation of its photoelectrochemical behavior' Appl. Phys. Lett., 95, 093108 (2009). https://doi.org/10.1063/1.3224181
  10. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayam, 'Mechanism of formation of two-dimensional crystals from latex particles on substrates' Langmuir, 8, 3183 (1992). https://doi.org/10.1021/la00048a054
  11. N. V. Dziomkina and G. Julius Vancso, 'Colloidal crystal assembly on topologically patterned templates' Soft Mater., 1, 265 (2005). https://doi.org/10.1039/b503145c
  12. R. C. Schroden, M. Al-Daous and A. Stein, 'Self-modification of spontaneous emission by inverse opal silica photonic crystals' Chem. Mater., 13, 2945 (2001). https://doi.org/10.1021/cm010230s
  13. R.-M. Liang, Y.-M. Chang, P.-W. Wu and P. Lin, 'Effect of annealing on the electrodeposited $Cu_{2}O$ films for photoelectrochemical hydrogen generation' Thin Solid Films, 519, 7191 (2010).
  14. Y. Hou, X. Y. Li, X. J. Zou, X. Quan and G. H. Chen, 'Photoeletrocatalytic activity of a $Cu_{2}O$-loaded selforganized highly oriented $TiO_{2}$ nanotube array electrode for 4-chlorophenol degradation' Environ. Sci. Technol., 43, 858 (2009). https://doi.org/10.1021/es802420u
  15. J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink and G. A. Sawatzky, 'Electronic structure of $Cu_{2}O$ and CuO' Phys. Rev. B, 38, 11322 (1988). https://doi.org/10.1103/PhysRevB.38.11322

Cited by

  1. Photoelectrochemical Water Splitting Using GaN vol.17, pp.1, 2014, https://doi.org/10.5229/JKES.2014.17.1.1