DOI QR코드

DOI QR Code

Thermal, Electrical Properties for Epoxy/Microsilica/Nanosilica Composites

에폭시/마이크로실리카/나노실리카 혼합 콤포지트의 열적, 전기적 특성

  • Kang, Geun-Bae (Department of Electrical Electronic Engineering, Joongbu University) ;
  • Kwon, Soon-Seok (Department of Electrical Electronic Engineering, Joongbu University) ;
  • Park, Jae-Jun (Department of Electrical Electronic Engineering, Joongbu University)
  • 강근배 (중부대학교 전기전자공학과) ;
  • 권순석 (중부대학교 전기전자공학과) ;
  • 박재준 (중부대학교 전기전자공학과)
  • Received : 2012.08.13
  • Accepted : 2012.09.04
  • Published : 2012.10.01

Abstract

The epoxy/micro-and nano-mixed silica composites(EMNC) systems were prepared and the AC insulation breakdown strength was evaluated. Glass transition temperature (Tg) and crosslink density were also measured by dynamic mechanical analyzer(DMA) in order to correlate them with the electrical and mechanical properties, and the effect of silane coupling agent on the electrical properties was also studied. Electrical properties and crosslink density of epoxy/micro-silica composite were noticeably improved by addition of nano-silica and silane coupling agent, and the highest breakdown strength was obtained by addition of 0.5~5 phr of nano-silica and 2.5 phr of silane coupling agent, and the highest tensile and flexural strength were obtained by addition of 2.5 phr of nano-silica.

Keywords

References

  1. Y. S. Cho, M. J. Shim, and S. W. Kim, Mater. Chem. Phys., 66, 70 (2000). https://doi.org/10.1016/S0254-0584(00)00272-8
  2. R. Sarathi, R. K. Sahu, and P. Rajeshkumar, Mater. Sci. Eng., 445, 567 (2007). https://doi.org/10.1016/j.msea.2006.09.077
  3. N. Hayakawa, H. Maeda, S. Chigusa, and H. Okubo, Cryogenics, 40, 167 (2000). https://doi.org/10.1016/S0011-2275(00)00024-2
  4. M. Kozako, N. Fuse, Y. Ohki, T. Okamoto, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 11, 833 (2004). https://doi.org/10.1109/TDEI.2004.1349788
  5. T. Tanaka, S. Kuge, M. Kozako, T. Imai, T. Ozaki, and T. Shimizu, Proc. ICEE, ME1-01, 4 (2006).
  6. P. L. The, M. Mariatti, H. M. Akil, C. K.Yeoh, K. N. Seetharamu, A. N. R. Wagiman, and K. S. Beh, Mater. Lett., 61, 2156 (2007). https://doi.org/10.1016/j.matlet.2006.08.036
  7. S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, Polymer, 42, 879 (2001). https://doi.org/10.1016/S0032-3861(00)00392-X
  8. Y. Nakamura, M. Yamaguchi, M. Okubo, and T. Matssummoto, J. Appl. Polym. Sci., 45, 1281 (1992). https://doi.org/10.1002/app.1992.070450716
  9. S. Barus, M. Zanetti, M. Lazzari, and L. Costa, Polymer, 50, 2595 (2009). https://doi.org/10.1016/j.polymer.2009.04.012
  10. W. E. Dondero and R. E. Gorga, J. Polym. Sci. Part B Polym. Phys., 44, 864 (2006). https://doi.org/10.1002/polb.20743
  11. S. Sinha Ray and M Okamoto, Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  12. T. Tanaka, G. C. Montanari, and R. Mülhaupt, IEEE Trans. Dielectr. Electr. Insul., 11, 763 (2004). https://doi.org/10.1109/TDEI.2004.1349782
  13. T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako, and T. Tanaka, Proc. 2005 Int. Symp. on Electr. Insul., (Kitakyushu, 2005) p. 239.
  14. T. Tanaka, M. Kozako, N. Fuse, and Y. Ohki, IEEE Trans. Dielectr. Electr. Insul., 12, 669 (2005). https://doi.org/10.1109/TDEI.2005.1511092
  15. L. M. Sun, T. Sakamoto, S. Ueta, K. Koga, and M. Takayanagi, Polym. J., 26, 939 (1994). https://doi.org/10.1295/polymj.26.939
  16. T. Tanaka, Y. Ohki, M. Ochi, M. Harada, and T. Imai, IEEE Trans. Dielectr. Electr. Insul., 15, 81 (2008). https://doi.org/10.1109/T-DEI.2008.4446739