DOI QR코드

DOI QR Code

Histogram of Gradient based Efficient Image Quality Assessment

그래디언트 히스토그램 기반의 효율적인 영상 품질 평가

  • No, Se-Yong (Department of Electronics and Computer Engineering, Hanyang University, LG Uplus) ;
  • Ahn, Sang-Woo (Department of Nanoscale Semiconductor Engineering, Hanyang University) ;
  • Chong, Jong-Wha (Department of Nanoscale Semiconductor Engineering, Hanyang University)
  • 노세용 (한양대학교 전기전자 컴퓨터 공학과, LG 유플러스) ;
  • 안상우 (한양대학교 나노반도체공학과) ;
  • 정정화 (한양대학교 나노반도체공학과)
  • Received : 2012.06.15
  • Accepted : 2012.08.01
  • Published : 2012.09.30

Abstract

Here we propose an image quality assessment (IQA) based on histogram of oriented gradients (HOG). This method makes use of the characteristic that the histogram of gradient image describes the state of input image. In the proposed method, the image quality is derived by the slope of the HOG obtained from the target image. The line representing the HOG is measured by a random sample consensus (RANSAC) on the HOG. Simulation results based on the LIVE image quality assessment database suggest that the proposed method aligns better with how the human visual system perceives image quality than several state-of-the-art IQAs.

본 논문에서는 그래디언트 히스토그램을 기반으로 하는 영상 품질 평가 알고리즘을 제안하였다. 이는 목표 영상의 그래디언트 영상을 히스토그램으로 나타낼 경우 영상의 특성을 잘 나타낸다는 장점을 이용하였다. 제안한 방법에서 영상의 품질은 목표 영상에서 얻어진 그래디언트 히스토그램의 기울기에 의해 평가되고, 그래디언트 히스토그램을 대표하는 선의 기울기는 RANSAC (Random Sample Consensus)에 의해 측정된다. LIVE 영상 품질 평가 데이터베이스를 사용한 실험 결과를 통하여 제안한 알고리즘이 현존하는 다른 알고리즘에 비해 실제 사람의 영상에 대한 평가와 유사하다는 것을 확인할 수 있다.

Keywords

References

  1. Z. Wang and A. C. Bovik, Modern Image Quality Assessment, New York Morgan and Claypool Publishing Company, 2006
  2. Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simonecelli, "Image Quality Assessment: From Error Visibility to Structural Similarity," IEEE Transactions on Image Processing, Vol. 13, No. 4, pp.600-612, 2004 https://doi.org/10.1109/TIP.2003.819861
  3. A. K. Moorthy and A. C. Bovik, "Blind Image Quality Assessment: From Natural scene Statistics to Perceptual Quality," IEEE Transaction on Image Processing, Vol. 20, No. 12, pp.3350-3364, 2011 https://doi.org/10.1109/TIP.2011.2147325
  4. R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis and W. T. Freeman, "Removing Camera Shake from a Single Photograph," ACM Transaction on Graphics, Vol. 25, No. 3, pp.787-794, 2006 https://doi.org/10.1145/1141911.1141956
  5. M. Fischler and R. Bolles, "Random Sample Conesnsus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography," Communications of the ACM, Vol. 24, No. 6, pp.381-395, 1981 https://doi.org/10.1145/358669.358692
  6. K. Seshadrinathan, R. Soundararajan, A. C. Bovik and L. K. Cormack, "Study of Subjective and Objective Quality Assessment of Video," IEEE Transactions on Image Processing, Vol. 19, No. 6, pp.1427-1441, 2010 https://doi.org/10.1109/TIP.2010.2042111
  7. H. R. Sheikh, Z. Wang, L. Cormack and A. C. Bovik, "LIVE Image Quality Assessment Database Release 2," http://live.ece.utexas.edu/research/quality
  8. D. M. Chandler and S. S. Hemami, "VSNR: A Wavelet-Based Visual Signal-toNoise Ratio for Natural Images," IEEE Transactions on Image Processing, Vol 16, No. 9, pp.2284-2298, 2007 https://doi.org/10.1109/TIP.2007.901820
  9. H. R. Sheikh and A. C. Bovik, "Image Information and Visual Quality," IEEE Transactions on Image Processing, Vol. 15, No. 2, pp.430-444, 2006 https://doi.org/10.1109/TIP.2005.859378
  10. A. K. Moorthy and A. C. Bovik, "A Two-Step Framework for Constructing Blind Image Quality Indices," IEEE Signal Processing Letters, Vol. 17, No. 5, pp.513-516, 2010 https://doi.org/10.1109/LSP.2010.2043888

Cited by

  1. 완전 참조 이미지 품질 평가를 이용한 지하 매질 물성 정보 도출 알고리즘의 정확성 평가 vol.24, pp.1, 2021, https://doi.org/10.7582/gge.2021.24.1.006