DOI QR코드

DOI QR Code

Utility of Gridded Observations for Statistical Bias-Correction of Climate Model Outputs and its Hydrologic Implication over West Central Florida

기후 모델 결과의 통계적 오차 보정과 수문 모델링 적용을 위한 격자 단위 자료의 유용성 평가

  • Hwang, Sye-Woon (Department of Agricultural and Biological Engineering, University of Florida)
  • Received : 2012.06.13
  • Accepted : 2012.08.31
  • Published : 2012.09.30

Abstract

강우의 관측망 확장과 위성 자료 및 기후 모델을 이용한 격자 단위자료가 개발 및 보급됨에 따라 다양한 자료의 분야별 활용성에 대한 연구의 필요성이 제기되고 있다. 본 연구에서는 지역 기후 모델 산출물의 오차 보정을 위한 격자 관측자료의 활용성을 평가하였다. 또한 통합 분포형 수문모델을 이용하여, 보정한 기후모델 결과의 수문 모의를 위한 기후 입력 자료로써의 적합성을 검토하였다. 보정된 결과는 각 관측자료의 월별 평균 강우량과 공간 분포를 비교적 잘 재현하였다. 한편 연강우량 시계열에 있어 그 양상은 잘 재현된 가운데 보정되지 않은 오차를 일부 포함하는 것으로 나타났다. 이는 점 관측자료로부터 추정된 시험 지역내 172개 소유역에 대한 일평균 강우량 자료와 비교해 볼 때 관측자료의 형식이나 정확성보다 기후모델의 불확실성에 기인하는 것으로 판단된다. 수문 모의 결과, 격자 자료를 이용하여 보정한 강우 입력자료는 수문 모델의 검보정에 이용된 소유역 단위 강우 자료를 이용한 결과에 상응하는 활용성을 보여주었다. 또한 강우의 공간 분포를 고려하지 않고, 시험유역 전체에 대한 평균 강우량을 입력 자료로 이용한 결과를 통해 기후 자료의 공간 분포와 관측 밀도의 중요성을 확인하였다.

Keywords

References

  1. Bicknell, B., J. C. Imhoff, J. L. Kittle, T. H. Jr., Jobes, and A. D. Donigian, 2001. Hydrologic simulation program-FORTRAN (HSPF): User's manual for Version 12, U.S. Environmental Protection Agency, Athens, GA.
  2. Colle, B. A., K. Westrick, and C. F. Mass, 1999. Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Weather Forecasting 14: 137-154. https://doi.org/10.1175/1520-0434(1999)014<0137:EOMAEP>2.0.CO;2
  3. Dibike Y. B. and P. Coulibaly, 2005. Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. Journal of Hydrology 307: 145-163. https://doi.org/10.1016/j.jhydrol.2004.10.012
  4. Elder, K., D. Cline, A. Goodbody, P. Houser, G. E. Liston, L. Mahrt, and N. Rutter, 2010. NASA Cold Land Processes Experiment (CLPX 2002/03): Ground-Based and Near-Surface Meteorological Observations. Journal of Hydrometeorology 10: 330-337.
  5. Florea, L. J., 2008. Geology and Hydrology of Karst in West-Central and North-Central Florida. Caves and Karst of Florida, 225-239.
  6. Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007. Linking climate change modeling to impacts studies: recent advances in downscaling techniques for hydrological modeling. International Journal of Climatology 27: 1547-1578. https://doi.org/10.1002/joc.1556
  7. Geurink, J. and R. Basso, 2011. Development, calibration, and evaluation of the Integrated Northern Tampa Bay Hydrologic Model. Tampa Bay Water and the Southwest Florida Water Management District. Clearwater, FL.
  8. Geurink, J., R. Basso, P. Tara, K. Trout, and M. Ross, 2006. Improvements to integrated hydrologic modeling in the Tampa Bay, Florida region: Hydrologic similarity and calibration metrics. Proceedings of the Joint Federal Interagency Conference, Reno, NV.
  9. Giorgi F., B. Hewitson, J. Christensen, M. Hulme, H. Von Storch, P. Whetton, R. Jones, L. Mearns, and C. Fu, 2001. Regional climate information-evaluation and projections. In Climate Change 2001: The Scientific Basis. Cambridge University Press: Cambridge. 583-638, 739-768.
  10. Graham L. P., S. Hagemann, S. Jaun, and M. Beniston, 2007. On interpreting hydrological change from regional climate models. Climatic Change 81: 97-122. DOI:10.1007/s10584-006-9217-0.
  11. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 and 122.
  12. Harbaugh, A. W. and M. G. McDonald, 1996. Programmer's documentation for MODFLOW-96, an update to the U.S. Geological Surbay modular finitedifference ground-water flow model, U.S. Geological Survey Open-File Report 96-486, Reston, VA.
  13. Hwang S., W. Graham, J. L. Hernández, C. Martinez, J. W. Jones, A. Adams, 2011. Quantitative spatiotemporal evaluation of dynamically downscaled MM5 precipitation predictions over the Tampa Bay region, Florida. Journal of Hydrometeorology 12(6): 1447-1464. https://doi.org/10.1175/2011JHM1309.1
  14. Hwang, S., W. Graham, J. S. Geurink, and A. Adams, 2012. Hydrologic implications of errors in dynamically downscaled and bias-corrected climate model predictions. Journal of Hydrology, under review.
  15. Karl, T. and K. Trenberth, 2003. Modern global change. Science 302: 1719-1722. https://doi.org/10.1126/science.1090228
  16. Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002. A Long-Term Hydrologically-Based Data Set of Land Surface Fluxes and States for the Conterminous United States. Journal of Climate 15: 3237-3251. https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2
  17. McGregor, J. L., 1997. Regional climate modeling. Meteorology and Atmospheric Physics 63: 105-117, DOI:10.1007/BF01025367.
  18. Murphy, A. J., 1999. An evaluation of statistical and dynamical techniques for downscaling local climate. Journal of Climate 12: 2256-2284. https://doi.org/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2
  19. Nash, J. E. and J. V. Sutcliffe, 1970. River flow forecasting through conceptual models part I: A discussion of principles. Journal of Hydrology 10: 282-290. Doi:10.1016/0022-1694(70)90255-6.
  20. Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62: 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
  21. Zhong, S., H. J. In, X. Bian, J. Charney, W. Heilman, and B. Potter, 2005. Evaluation of real-time high-resolution MM5 predictions over the Great Lakes region. Weather Forecasting 20: 63-81. https://doi.org/10.1175/WAF-834.1

Cited by

  1. Uncertainty in Regional Climate Change Impact Assessment using Bias-Correction Technique for Future Climate Scenarios vol.55, pp.4, 2013, https://doi.org/10.5389/KSAE.2013.55.4.095
  2. Assessing the Performance of CMIP5 GCMs for Various Climatic Elements and Indicators over the Southeast US vol.47, pp.11, 2014, https://doi.org/10.3741/JKWRA.2014.47.11.1039
  3. Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.059
  4. Assessing the Utility of Rainfall Forecasts for Weekly Groundwater Level Forecast in Tampa Bay Region, Florida vol.55, pp.6, 2013, https://doi.org/10.5389/KSAE.2013.55.6.001