DOI QR코드

DOI QR Code

Comparison of the Genomic Structure of the Heat Shock Protein-88(Hsp88) Genes in the Four Entomopathogenic Fungal Strains, Paecilomyces tenuipes Jocheon-1, P. tenuipes, Cordyceps militaris, and C. pruinosa

  • Liu, Ya-Qi (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Park, Nam-Sook (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Kim, Yong-Gyun (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Kim, Keun-Ki (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Park, Hyun-Chul (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Son, Hong-Joo (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Lee, Sang-Mong (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University)
  • Received : 2012.08.20
  • Accepted : 2012.09.03
  • Published : 2012.09.30

Abstract

Comparison on the genomic structure and phylogenetic relationship of the Hsp88 genes from P. tenuipes Jochoen-1, P. tenuipes, C. militaris and C. pruinosa was described. The Hsp88 genes from the three entomopathogenic strains, P. tenuipes Jocheon-1(strain), P. tenuipes(original species), and C. militaris contain the identical genomic structure, namely 5 introns and 6 exons with the length of 13, 62, 32, 1,438, 306, 288 nucleotides encoding 713 amino acid residues, whereas in case of C. pruinosa, it contains 4 introns and 5 exons with the length of 13, 62, 32, 1,744, 288 nucleotides encoding 713 amino acid residues. The genomic DNA length of the Hsp88 genes from P. tenuipes Jocheon-1 and P. tenuipes are both 2,600 nucleotides long in size. The Hsp88 genes from C. militaris and C. pruinosa are 2,582, 2,576 nucleotides long in size, respectively. Hsp88 genes of the P. tenuipes Jochoen-1, P. tenuipes, C. militaris and C. pruinosa also contain the conserved ATP-binding domain. Phylogenetic analysis of the Hsp genes of the four strains tested in this study showed that the fungal Hsp88 is divided into two separate clades, ascomycetes and deutromycete. Within the ascomycetes fungal clade, the P. tenuipes Jochoen-1 and P. tenuipes formed a subgroup, on the other hand, C. militaris and C. pruinosa formed another subgroup. Pair-wise comparison of P. tenuipes Jocheon-1 Hsp88 with those of P. tenuipes, C. militaris and C. pruinosa Hsp88s revealed significant identity in deduced amino acid sequence among these strains. The P. tenuipes Jocheon-1 Hsp88 showed 99% identity with the P. tenuipes, 97% identity with the C. militaris, and 98% identity with the C. pruinosa.

Keywords

References

  1. Arrigo AP, Fakan S, Tissieres A (1980) Localization of the heat shock-induced proteins in Drosophila melanogaster tissue culture cells. Dev Biol 78, 86-103. https://doi.org/10.1016/0012-1606(80)90320-6
  2. Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin and Hsp70 heat shock proteins. Proc Natl Acad Sci USA 89, 7290-7294. https://doi.org/10.1073/pnas.89.16.7290
  3. Buchberger A, Valencia A, McMacken R, Sander C, Bukau B (1994) The chaperone function of DNA K requires the coupling of ATPase activity with substrate binding through residue E171. EMBO J 13, 1687-1695.
  4. Davis TWU (2004) Heat/stress responses. Encyclo Biol Chem 2, 343-347.
  5. Flaherty KM, McKay DB, Kabsch W, Holmes KC (1991) Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl. Acad. Sci USA 88, 5041-5045. https://doi.org/10.1073/pnas.88.11.5041
  6. Fujita T, Inoue K, Yamamoto S (1994) Fungal metabolite a potent immuno suppressive activity found in Isariasinclaini metabolite. J Antibiot 47, 208-215. https://doi.org/10.7164/antibiotics.47.208
  7. Furuya T, Hirotani M, Matsuzawa M (1983) N6-(2-HYDROXYETHYL) adenosine, a biologically active compound from cultured mycelia of Codyceps and Isaria species. Phytochemistry 22, 2509-2512. https://doi.org/10.1016/0031-9422(83)80150-2
  8. Holmgren R, Livak K, Morimoto R, Freund R, Meselson M (1979) Studies of cloned sequences from 4 Drosophila heat shock loci. Cell 18, 1359-1370. https://doi.org/10.1016/0092-8674(79)90246-0
  9. Hsu CH, Sun HL, Sheu JN, Ku MS, Hu CM, Chan Y, Lue KH (2008) Effects of the immune modulatory agent Cordyceps militaris on airway inflammation in a mouse asthma model. Pediat Neonatol 49, 171-178. https://doi.org/10.1016/S1875-9572(09)60004-8
  10. Im DS (2003) Linking chinese medicine and G- protein-coupled receptors. Trends Pharmacol Sci 24, 2-4. https://doi.org/10.1016/S0165-6147(02)00012-3
  11. Kapoor M, Curle CA, Runham C (1995) The HSP70 gene family of Saccharomyces cerevisiae of Neurospora crassa: cloning, sequence analysis, expression, and genetic mapping of the major stress-inducible member. J Bacteriol 177, 212-221. https://doi.org/10.1128/jb.177.1.212-221.1995
  12. Khan MA, Tania M, Zhang DZ, Chen HC (2010) Cordyceps mushroom: a potent anticancer nutraceutical. Open Nutra J 3, 179-83. https://doi.org/10.2174/1876396001003010179
  13. Kim HG, Song H, Yoon DH, Song BW, Park SM, Sung GH, Cho JY, Park HI, Choi S, Song WO, Hwang KC, Kim TW (2010) Cordyceps pruinosa extracts induce apoptosis of HeLa cells by a caspase dependent pathway. J Ethnopharmacol 128, 342-51. https://doi.org/10.1016/j.jep.2010.01.049
  14. Kneifel H, Konig WA, Loeffler W, Muller R (1977) Ophiocordin, an antifungal antibiotic of cordyceps ophioglossoides. Arch Microbiol 113, 121-130. https://doi.org/10.1007/BF00428591
  15. Kumar S, Tamura K, Nei M (1994) MEGA: Molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci 10, 189-191.
  16. Kuo MC, Chang CY, Cheng TL, Wu MJ (2007) Immunomodulatory effect of exo-polysaccharides from submerged cultured Cordyceps sinensis: enhancement of cytokine synthesis, CD11b expression, and phagocytosis. Appl Microbiol Biotechnol 75, 769-775. https://doi.org/10.1007/s00253-007-0880-5
  17. Lee SM, Park NS, Jin BR, Kang HS, Jung JH, Park E (2006) Effects of Paecilomyces tenuipes cultivated in egg yolk on lipid metabolism in rats on a high fat-cholesterol diet. J Med Food 9, 214-22. https://doi.org/10.1089/jmf.2006.9.214
  18. Lemaux P, Herendeen S, Bloch P, Niedhardt F (1978) Transient rates of synthesis of individual polypeptides in E.coli following temperature shifts. Cell. 13, 427-434. https://doi.org/10.1016/0092-8674(78)90317-3
  19. Lindquist S (1986) The heat shock response. Annu Rev Biochem 55, 1151-1191. https://doi.org/10.1146/annurev.bi.55.070186.005443
  20. Liu YQ (2011) Molecular cloning, expression and characterization of heat shock protein gene from Paecilomyces tenuipes Jocheon-1. M.S. Thesis, Pusan National University, Korea.
  21. Montefiori DC, SobolJr RW, Li SW, Reichenbach NL, Suhadolnik RJ, Charubala R, Pfleiderer W, Modliszewski A, Robinson J, Mitchill WM (1989) Phosphorothioate and cordycepin analogues of 2,5-oligo adenylate: Inhibition of human immunodeficiency type 1 reverse transcriptase and infection in vitro. Proc Natl Acad Sci USA 86, 7191-7194. https://doi.org/10.1073/pnas.86.18.7191
  22. Nakamura K, Yamaguchi Y, Kagota S, Kwon YM, Shinozuka K, Kunitomo M (1999) Inhibitory effect of Cordyceps sinensis on spontaneous liver metastasis on lewis lung carcinoma and B16 melanoma cells in syngeneic mice. Jpn J Parmacol 79, 335-341. https://doi.org/10.1254/jjp.79.335
  23. Ohta Y, Lee JB, Hayashi K, Fujita A, Park DK, Hayashi TJ (2007) In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. Agric Food Chem 55, 10194-10199. https://doi.org/10.1021/jf0721287
  24. Park NS, Lee KS, Sohn HD, Kim DH, Lee SM, Park E, Kim I, Je YH, Jin BR (2005) Molecular cloning, expression, and characterization of the Cu, Zn superoxide dismutase(SOD1) gene from the entomopathogenic fungus, Cordyceps militaris. Mycologia 97, 130-138. https://doi.org/10.3852/mycologia.97.1.130
  25. Park SE, Kim J, Lee YW, Yoo HS, Cho CK (2009) Antitumor activity of water extracts from Cordyceps militaris in NCIH460 cell xenografted nude mice. J Acupunct Meridian Stud 2, 294-300. https://doi.org/10.1016/S2005-2901(09)60071-6
  26. Pelham H, Biens M (1982) DNA sequences required for transcriptional regulation of the Drosophila heat-shock gene in monkey cells and Xenopus oocytes. In Heat Shock from Bacteria to Man. Edited by M. Schlesinger. Ashburner, M. and A. Tissieres pp. 43-48. Cold Spring Harbor Press, New York.
  27. Peterson NS, Mitchell H (1985) Heat shock proteins in comprehensive insect. Physiol Biochem Pharmacol 10, 347-365.
  28. Plesofsky-Vig N, Brambl R (1998) Characterization of an 88- kDa heat shock protein of Neurosporacrassathat interacts with Hsp30. J Biol Chem 273, 11335-11341. https://doi.org/10.1074/jbc.273.18.11335
  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
  30. Samson RA, Evans HC, Latge' JP (1988) Atlas of entomopathogenic fungi. Springer-Verlag.
  31. ShimizuD (1997) Illustrated vegetable wasps and plant worms in colour. IE-NO-HIKARI Associantion. Japan.
  32. Snutch TP, Heschl MF, Baillie DL (1988) The Caenorhabditis elegans Hsp70 gene family: a molecular characterization. Gene 64, 241-255. https://doi.org/10.1016/0378-1119(88)90339-3
  33. Stefani RMP, Gomes SL (1995) An unique intron-containing intron-containing Hsp70 gene induced by heat shock and during sporulation in the aquatic fungus Blastocladiella emersonii. Gene 152, 19-26. https://doi.org/10.1016/0378-1119(95)00645-M
  34. Sung JM, Lee HK, Choi YS, Kim YY, Kim SH, Sung GH (1997) Distribution and taxonomy of entomopathogenic fungal species from Korea. KJM 25, 239-252.
  35. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  36. Tissieres A, Mitchell HK, Tracy U (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84, 389-398. https://doi.org/10.1016/0022-2836(74)90447-1
  37. Xu RH, Peng XE, Chen GZ, Chen GL (1992) Effects of Cordyceps sinensis on natural killer activity and colony formation of B16 melanoma. Chin Med J 105, 97-101.
  38. Yin YY, Ming L, Zheng LF, Kan HW, Li CR, Li PW (2007) Bioactive compounds from Paecilomyces tenuipes regulating the function of the hypothalamo-hypophyseal system axis in chronic unpredictable stress rats. Chin Med J 120, 1088-1092.
  39. Yoshida J, Takamura S, Suzuki S (1989) Antitumor activity of an extract of Cordyceps sinensis(Berk.) Sac. against murine tumor cell lines. J Exp Med 59, 157-161.
  40. Zhang AI, Lu JH, Zhang N, Zheng D, Zhang GR, Teng LR (2010) Extraction, Purification and Anti-tumor Activity of Polysaccharide from Mycelium of Mutant Cordyceps militaris. Chem Res Chinese Univ 26, 798-802.
  41. Zhu, JS, Halpern GM, Jones K (1998) The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part1. J Altern Complement Med 4, 289-303. https://doi.org/10.1089/acm.1998.4.3-289

Cited by

  1. Molecular Cloning of the cDNA of Heat Shock Protein 88 Gene from the Entomopathogenic Fungus, Paecilomyces tenuipes Jocheon-1 vol.28, pp.2, 2014, https://doi.org/10.7852/ijie.2014.28.2.71
  2. 한국에서 개발된 곤충유래 약용버섯인 누에동충하초의 생산기술개발 및 약리학적 특성 vol.27, pp.2, 2012, https://doi.org/10.5352/jls.2017.27.2.247