DOI QR코드

DOI QR Code

A 15-GHz CMOS Multiphase Rotary Traveling-Wave Voltage-Controlled Oscillator

  • 투고 : 2011.09.08
  • 발행 : 2012.09.30

초록

This paper presents a 15-GHz multiphase rotary traveling-wave voltage-controlled oscillator (RTW VCO) where a shielded coplanar stripline (CPS) is exploited to provide better shielding protection and lower phase noise at a moderate cost of characteristic impedance and power consumption. Test chips were implemented in a standard 90-nm CMOS process, demonstrating the measured results of 2-GHz frequency tuning range, -11.3-dBm output power, -109.6-dBc/Hz phase noise at 1-MHz offset, and 2-ps RMS clock jitter at 15 GHz. The chip core occupies the area of $0.2mm^2$ and dissipates 12 mW from a single 1.2-V supply.

키워드

참고문헌

  1. W. F. Andress, and D. Ham, "Recent developments in standing-wave oscillator design: Review," IEEE RFIC Symp., pp. 119-122, 2004.
  2. J. Wood, T. C. Edwards, and S. Lipa, "Rotary traveling-wave oscillator arrays: A new clock technology", IEEE J. of Solid-State Circuits, Vol. 36, No. 11, pp. 1654-1665, Nov. 2001. https://doi.org/10.1109/4.962285
  3. G. Le Grand de Mercey, "18GHz-36GHz rotary traveling wave voltage controlled oscillator in a CMOS technology", Ph.D. dissertation, Dept. Inform. Tech., Univ. Bundeswehr, Munich, Germany, Aug. 2004.
  4. H. H. Hsieh, Y. C. Hsu, and L. H. Lu, "A 15/30-GHz dual-band multiphase voltage controlled oscillator in 0.18-${\mu}m$ CMOS", IEEE Trans. on Microwave Theory and Technique, Vol. 55, No. 33, pp. 474-483, Mar. 2007. https://doi.org/10.1109/TMTT.2006.890518
  5. N. Tzartzanis and W. W. Walker, "A reversible poly-phase distributed VCO", IEEE Tech. Digest of ISSCC, pp. 596-597, Feb. 2006.
  6. R. E. Collin, 'Foundations for Microwave Engineering', 2nd Ed., Jonn Wilely&Sons, NJ, 2001.
  7. Z. T. Yu and X. Liu, "Low-power rotary clock array design", IEEE Trans. on VLSI Systems, Vol.15, No. 1, pp. 5-12, Jan. 2007. https://doi.org/10.1109/TVLSI.2006.887804
  8. D. Ham and A. Hajimiri, "Virtual damping and einstein relation in oscillators," IEEE J. of Solid State Circuits, Vol. 38, No. 3, pp. 407-418, Mar. 2003. https://doi.org/10.1109/JSSC.2002.808283
  9. F. B. Abdeljelil, W. Tatinian, L. Carpineto, and G. Jacquemod, "Design of a CMOS 12 GHz rotary traveling wave oscillator with switched capacitor tuning," IEEE RFIC Symp., pp. 579-582, 2009.
  10. N. Nedovic et al., "A 40-44 Gb/s 3${\times}$oversampling CMOS CDR/1:16 DEMUX," IEEE J. of Solid- State Circuits, Vol. 42, No. 12, pp. 2726-2735, Dec. 2007. https://doi.org/10.1109/JSSC.2007.908714
  11. D. Axelrad et al., "A multi-phase 10GHz VCO in CMOS/SOI for 40Gbit/s SONET OC-768 clock and data recovery circuits", IEEE RFIC Symp., pp. 573-576, 2005.
  12. J. Lee and B. Razavi, "A 40-Gb/s clock and data recovery circuit in 0.18-${\mu}m$ CMOS technology," IEEE J. of Solid-State Circuits, Vol. 38, No. 12, pp. 2181-2190, Dec. 2003. https://doi.org/10.1109/JSSC.2003.818566
  13. J. C. Chien, and L. H. Lu, "A 32-GHz rotary traveling-wave voltage controlled oscillator in 0.18-${\mu}m$ CMOS," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 10, pp. 724-726, Oct. 2007. https://doi.org/10.1109/LMWC.2007.905634
  14. A. Hajimiri and T. H. Lee, "Design issues in CMOS differential LC oscillators," IEEE J. of Solid-State Circuits, pp. 717-724, May 1999.
  15. T. Lagutere, J. M. Pailot, and H. Guegnaud, "Method to design low noise differential CMOS VCOs without tail current source", Int. J. of Electronics and Comm., Vol. 60, No. 2, pp. 172-178, 2006. https://doi.org/10.1016/j.aeue.2005.05.003
  16. S. Levantino et al., "Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion," IEEE J. of Solid-State Circuits, Vol. 37, No. 8, pp. 1003-1011, Aug. 2002. https://doi.org/10.1109/JSSC.2002.800969
  17. E. Hegazi, H. Sjoland, and A. A. Abidi, "A filtering technique to lower LC oscillator phase noise", IEEE J. of Solid-State Circuits, Vol. 36, No. 12, pp. 1921-2930, Dec. 2001. https://doi.org/10.1109/4.972142
  18. A. Jeng and C. G. Sodini, "The impact of device type and sizing on phase noise mechanism", IEEE J. of Solid-State Circuits, Vol. 40, No. 2, pp. 360-369, Feb. 2005. https://doi.org/10.1109/JSSC.2004.841035
  19. B. Soltanian and P. Kinget, "AM-FM conversion by the active devices in MOS LC-VCOs and its effect on the optimal amplitude", IEEE RFIC Symp., pp. 104-108, 2006.
  20. O. Casha, I. Grech, J. Micallef, and E. Gatt, "Design considerations and device selection in the implementation of low phase noise LC-VCOs," IEEE ISCAS, pp. 376-379, May, 2005.
  21. H. Wu, and A. Hajimiri, "Silicon-based distributed voltage-controlled oscillators," IEEE J. of Solid-State Circuits, Vol. 36, No. 3, pp. 493-502, Mar. 2001. https://doi.org/10.1109/4.910488
  22. P. Andreani, and S. Mattisson, "On the use of MOS varactors in RF VCO's," IEEE J. of Solid-State Circuits, Vol. 35, No. 6, pp. 905-910, Jun. 2000. https://doi.org/10.1109/4.845194
  23. S. L. Jang, C. C. Liu, M. H. Suchen, et al., "An eight-phase CMOS voltage controlled oscillator," Microwave and Optical Tech. Lett., Vol. 51, No. 5, pp. 1225-1228, May 2009. https://doi.org/10.1002/mop.24270
  24. T. Shibasaki, et al., "18-GHz clock distribution using a coupled VCO array," IEICE Trans. Electron., Vol. E90-C, No. 4, pp. 811-823, Apr. 2007. https://doi.org/10.1093/ietele/e90-c.4.811

피인용 문헌

  1. Frequency Domain Phase Shift Measurement Technique Applied to a Multiphase Rotary Travelling-Wave VCO vol.25, pp.12, 2015, https://doi.org/10.1109/LMWC.2015.2495150