DOI QR코드

DOI QR Code

나노패턴된 기판 위에서의 그래핀의 비등방성 전자 수송 특성

Anisotropic Electronic Transport of Graphene on a Nano-Patterned Substrate

  • Khalil, H.M.W. (Department of Physics and Graphene Research Institute, Sejong University) ;
  • Kelekci, O. (Department of Physics and Graphene Research Institute, Sejong University) ;
  • Noh, H. (Department of Physics and Graphene Research Institute, Sejong University) ;
  • Xie, Y.H. (Department of Materials Science and Engineering, University of California)
  • 투고 : 2012.08.03
  • 심사 : 2012.09.17
  • 발행 : 2012.09.30

초록

주기적인 나노트랜치 패턴이 있는 기판 위에 놓인 CVD 그래핀의 전도특성을 측정하였다. 나노트랜치에 대해 평행한 방향과 수직한 방향 사이에 전도특성의 큰 비등방성을 발견하였다. 전기 전도의 방향이 나노트랜치에 수직한 경우, 약한 한곳모임의 특성에 있어서도 큰 차이점이 발견되었는데, 이는 퍼텐셜 변조에 의해 생겨나는 전하밀도의 비균일성에 의해 생겨나는 것으로 해석된다.

We report on the measurements of electronic transport properties of CVD graphene placed on a pre-patterned substrate with periodic nano trenches. A strong anisotropy has been observed between the transport parallel and perpendicular to the trenches. Characteristically different weak localization corrections have been also observed when the transport was perpendicular to the trench, which is interpreted as due to a density inhomogeneity generated by the potential modulations.

키워드

참고문헌

  1. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
  2. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011). https://doi.org/10.1103/RevModPhys.83.407
  3. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004). https://doi.org/10.1021/jp040650f
  4. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, Appl. Phys. Lett. 93, 113103 (2008). https://doi.org/10.1063/1.2982585
  5. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Lee, and J. H. Ahn, Nano Lett. 10, 490 (2010). https://doi.org/10.1021/nl903272n
  6. H. Cao, Q. Yu, L. A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D. K. Benjamin, Z. Jiang, J. Bao, S. S. Pei, and Y. P. Chen, Appl. Phys. Lett. 96, 122106 (2010). https://doi.org/10.1063/1.3371684
  7. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid. State. Commun. 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  8. A. Konar, T. Fang, and D. Jena, Phys. Rev. B 82, 115452 (2010). https://doi.org/10.1103/PhysRevB.82.115452
  9. X. Li, E. A. Barry, J. M. Zavada, M. Buongiorno, and K. W. Kim, Appl. Phys. Lett. 97, 232105 (2010). https://doi.org/10.1063/1.3525606
  10. A. Betti, G. Fiori, and G. Iannaccone, Appl. Phys. Lett. 98, 212111 (2011). https://doi.org/10.1063/1.3587627
  11. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature Nanotech. 5, 722 (2010). https://doi.org/10.1038/nnano.2010.172
  12. J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Nature Nanotech. 5, 190 (2010). https://doi.org/10.1038/nnano.2010.8
  13. R. V. Gorbachev, F. V. Tikhonenko, A. S. Mayorov, D. W. Horsell, and A. K. Savchenko, Phys. Rev. Lett. 98, 176805 (2007). https://doi.org/10.1103/PhysRevLett.98.176805
  14. F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008). https://doi.org/10.1103/PhysRevLett.100.056802
  15. F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2009). https://doi.org/10.1103/PhysRevLett.103.226801
  16. E. McCann, K. Kechedzhi, V. I. Fal'ko, H. Suzuura, T. Ando, and B. I. Altshuler, Phys. Rev. Lett. 97, 146805 (2006). https://doi.org/10.1103/PhysRevLett.97.146805
  17. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Phys. 2, 620 (2006). https://doi.org/10.1038/nphys384

피인용 문헌

  1. Self Annealing Effects of Arsenic Ion Implanted Amorphous Carbon Films during Microwave Plasma Chemical Vapor Deposition vol.22, pp.1, 2013, https://doi.org/10.5757/JKVS.2013.22.1.31