DOI QR코드

DOI QR Code

Investigation of Proton Irradiated Effect on n, p type Silicon by Positron Annihilation Method

양전자 소멸 측정에 의한 n, p형 실리콘 구조 특성

  • Lee, C.Y. (Department of Physics, Hannam University)
  • Received : 2012.07.13
  • Accepted : 2012.08.29
  • Published : 2012.09.30

Abstract

It is described that the proton beam induceds micro-size defects and electronic deep levels in n or p type single crystal silicon. Positron lifetime and Coincidence Doppler Broadening Positron Annihilation Spectroscopy were applied to study of characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The samples were exposed by 3.98 MeV proton beams ranging between 0 to ${\sim}10^{14}$ particles. The S-parameter values strongly depend on the irradiated proton beam, that indicated the defects generate more. Positron lifetime shows that positrons trapped in vacancies and lifetime ${\tau}_2$ increased according to proton irradiation.

수명 측정법과 동시 계수 도플러 넓어짐 양전자 소멸 분광법으로 p형과 n형 실리콘 시료에 3.98 MeV 에너지를 가진 $0.0{\sim}20.0{\times}10^{13}\;protons/cm^2$ 양성자 빔 조사에 의한 결함을 측정하여 실리콘 결함 특성에 대하여 조사하였다. 양전자와 전자의 쌍소멸로 발생하는 감마선 스펙트럼의 전자 밀도 에너지를 수리적 해석 방법인 S-변수와 열린 부피 결함에 대한 측정법으로서 양전자 수명 ${\tau}_1$${\tau}_2$, 이에 따른 밀도 $I_1$$I_2$를 사용하여, 시료의 구조 변화를 측정하였다. 본 연구에서 측정된 S-변수와 양전자 수명은 시료에 조사된 양성자 조사량의 변화에 따라 결함이 증가하였으며, 양전자 수명 측정과 같은 경향을 보여준다. SRIM의 결과로써, 양성자 조사 에너지에 따른 Bragg 피크 때문에 양성자는 시료의 특정 깊이에 주로 결함을 형성하여 시료 전체에는 결함으로 잘 나타나지 않기 때문이다. 빔의 조사량에 따른 결함의 영향이 더 큰 것으로 나타났다.

Keywords

References

  1. Teresa Oh, J. Korean Vacuum Soc. 20, 189 (2011). https://doi.org/10.5757/JKVS.2011.20.3.189
  2. G. P. Willeke, Sol. Energ. Mater. Sol. Cell. 72, 191 (2002). https://doi.org/10.1016/S0927-0248(01)00164-7
  3. B. J. Kang, S. Park, S. H. Lee, H. Kim, B. G. Shin, S. Kwon, J. W. Byeon, S. Yoon, and D. Kim, Korean J. Mater. Res. 20, 617 (2010). https://doi.org/10.3740/MRSK.2010.20.11.617
  4. K. D. Lee, Y. D. Kim, S. S. Dahiwale, H. Boo, S. Park, S. J. Tark, and D. Kim, J. Korean Vacuum Soc. 21, 29 (2012). https://doi.org/10.5757/JKVS.2012.21.1.29
  5. Chunqing He, M. Muramatsua, T. Ohdairaa, N. Oshimaa, A. Kinomuraa, R. Suzukia, and Y. Kobayashia, Radiation Phys. and Chem. 76, 204 (2007). https://doi.org/10.1016/j.radphyschem.2006.03.036
  6. I. Y. Dekhtyar, D. A. Levina, and V. S. Mikhalenkov, Sov. Phys. Dokl. 9, 492 (1964).
  7. C. Y. Lee, W. N. Kang, Y. Nagai, K. Inoue, and M. Hasegawa, J. Korean Vacuum Soc. 17, 160 (2008). https://doi.org/10.5757/JKVS.2008.17.2.160
  8. J. H. Kim, Y. Nagai, and C. Y. Lee, J. Korean Vacuum Soc. 18, 447 (2009). https://doi.org/10.5757/JKVS.2009.18.6.447
  9. K. G. Lynn, J. E. Dickman, W. L. Brown, and M. F. Robbins, Phy. Rev. B 20, 3566 (1978).
  10. S. Dannefaer, P. Mascher, and D. Kerr, J. Appl. Phys. 73, 3740 (1993). https://doi.org/10.1063/1.352905
  11. Z. Jin, G. Niu, J. D. Cressler, C. J. Marshall, P. W. Marshall, H. S. Kim, R. A. Reed, and D. L. Harame, Nuclear Science, IEEE Transactions 48, 2244 (2001).
  12. R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors (Springer, Heidelberg, 1999).
  13. L. S. Vlasenko, M. P. Vlasenko, V. A. Kozlov, and V. V. Kozlovskii, Semiconductors 33, 1059 (1999). https://doi.org/10.1134/1.1187864
  14. J. G. Shin, C. Y. Lee, S. H. Bae, J. H. Kim, and J. H. Kwon, Korean J. Mater. Res. 18, 427 (2008). https://doi.org/10.3740/MRSK.2008.18.8.427
  15. J. J. Kelly and R. M. Lambrecht, Phys. Lett. A 60, 475 (1977). https://doi.org/10.1016/0375-9601(77)90060-3
  16. N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Phys. Rev. B 35, 4166 (1987). https://doi.org/10.1103/PhysRevB.35.4166
  17. T. K. Gupta and W. G. Carlson, J. Mater. Sci. 20, 3487 (1987).
  18. S. Fatima, B. G. Svensson, and C. Jagadish, Optoelectronic and Micro-electronic Materials And Devices Proceedings, Conference on 154 (1996).
  19. A. Polity, F. Borner, S. Huth, S. Eichler, and R. Krause-Rehberg, Phys. Rev. B 58, 10363 (1998). https://doi.org/10.1103/PhysRevB.58.10363
  20. R. Poirier, V. Avalos, S. Dannefaer, F. Schiettekatte, and S. Roorda, Nuclear Instr. Meth. Bin Phys. Res. 206, 85 (2003). https://doi.org/10.1016/S0168-583X(03)00686-4
  21. L. Henry, M. -F. Barthe, C. Corbel, P. Desgardin, and G. Blondiaux, Phys. Rev. B 67, 11520 (2003).

Cited by

  1. The Defect Characterization of Luminescence Thin Film by the Positron Annihilation Spectroscopy vol.22, pp.5, 2013, https://doi.org/10.5757/JKVS.2013.22.5.250