참고문헌
-
Song, C. O., "Global Challenges and Strategies for Control, Conversion and Utilization of
$CO_{2}$ for Sustainable Dvelopment Ivolving Energy, Catalysis, Adsorption and Chemical processing," Catal. Today, 115, 2-32 (2006). https://doi.org/10.1016/j.cattod.2006.02.029 - Aresta, M., and Dibenedetto, A., Carbon Dioxide Recovery and Utilization, Kluwer Academic Publisher, Dordrecht, 2003, pp. 211-214.
- Ruckenstein, E., and Wang, H. Y., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Cobalt Catalysts," Appl. Catal. A, 204, 257-263(2000) https://doi.org/10.1016/S0926-860X(00)00674-8
- Edwards, J. H., and Maitra, A. M., "The Chemistry of Methane Reforming with Carbon Dioxide and Its Current and Potential Applications," Fuel Proc. Technol., 42, 269-289 (1995). https://doi.org/10.1016/0378-3820(94)00105-3
-
Ruckenstein, E., and Wang, H. Y., "Carbon Deposition and Catalytic Deactivation during
$CO_{2}$ Reforming of$CH_{4}$ over Co/gamma-$Al_{2}O_{3}$ Catalysts," J. Catal., 205, 289-293 (2002). https://doi.org/10.1006/jcat.2001.3458 -
Hou, Z. Y., and Yashima, T., "Supported Co Catalysts for Methane Reforming with
$CO_{2}$ ," React. Kinet. Catal. Lett., 81(1), 153-159 (2004). https://doi.org/10.1023/B:REAC.0000016529.84565.e5 -
Bouarab, R., Cherifi, O., and Auroux, A., "Reforming of Methane by
$CO_{2}$ in Presence of Cobalt-based Catalysts," Green Chem., 5, 209-212 (2003). https://doi.org/10.1039/b210348f -
Mondal, K. C., Choudhary, V. R., and Joshi, U. A., "
$CO_{2}$ Reforming of Methane to Syngas over Highly Active and Stable Supported$CoO_{x}$ (Accompanied with MgO,$ZrO_{2}$ or$CeO_{2}$ ) Catalysts," Appl. Catal. A, 316, 47-52 (2007). https://doi.org/10.1016/j.apcata.2006.09.016 -
Nagaoka, K., Takanabe, K., and Aika, K., "Influence of the Reduction Temperature on Catalytic Activity of Co/
$TiO_{2}$ (Anatase- type) for High Pressure Dry Reforming of Methane," Appl. Catal. A, 255, 13-21 (2003). https://doi.org/10.1016/S0926-860X(03)00631-8 -
Mark, M. F., and Maier, W. F., "
$CO_{2}$ -reforming of Methane on Supported Rh and Ir Catalysts," J. Catal., 164, 122-130 (1996). https://doi.org/10.1006/jcat.1996.0368 - Wang, H. Y., and Ruckenstein, E., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Rhodium Catalysts: the Effect of Support," Appl. Catal. A, 204, 143-152 (2000). https://doi.org/10.1016/S0926-860X(00)00547-0
-
Hou, Z. Y., Chen, P., Fang, H. L., Zheng, X. M., and Yashima, T., "Production of Synthesis Gas via Methane Reforming with
$CO_{2}$ on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts," Int. J. Hydrogen Energy, 31, 555-561 (2006). https://doi.org/10.1016/j.ijhydene.2005.06.010 -
Bradford, M. C. J., and Vannice, M. A., "
$CO_{2}$ Reforming of$CH_{4}$ over Supported Pt Catalysts," J. Catal., 173, 157-171 (1998). https://doi.org/10.1006/jcat.1997.1910 -
Bitter, J. H., Seshan, K., and Lercher, J. A., "Mono and Bifunctional Pathways of
$CO_{2}$ /$CH_{4}$ Reforming over Pt and Rh Based Catalysts," J. Catal., 176, 93-101 (1998). https://doi.org/10.1006/jcat.1998.2022 -
Bitter, J. H., Seshan, K., and Lercher, J. A., "The State of Zirconia Supported Platinum Catalysts for
$CO_{2}$ /$CH_ {4}$ Reforming," J. Catal., 171, 279-286 (1997). https://doi.org/10.1006/jcat.1997.1792 -
Souza, M. M. V. M., Aranda, D. A. G., and Schmal, M., "Coke Formation on Pt/
$ZrO_{2}$ /$Al_{2}O_{3}$ Catalysts during$CH_{4}$ Reforming with$CO_{2}$ ," Ind. Eng. Chem. Res., 41, 4681-4685 (2002). https://doi.org/10.1021/ie010970a -
Bitter, J. H., Seshan, K., and Lercher, J. A., "Deactivation and Coke Accumulation during
$CO_{2}$ /$CH_{4}$ Reforming over Pt Catalysts," J. Catal., 183, 336-343 (1999). https://doi.org/10.1006/jcat.1999.2402 -
Ballarini, A. D., de Miguel, S. R., Jablonski, E. L., Scelza, O. A., and Castro, A. A., "Reforming of
$CH_{4}$ with$CO_{2}$ on Pt-supported Catalysts Effect of the Support on the Catalytic Behaviour," Catal. Today, 107-108, 481-486 (2005). https://doi.org/10.1016/j.cattod.2005.07.058 - Nakagawa, K., Anzai, K., Matsui, N., Ikenaga, N., Suzuki, T., and Teng, Y. H., "Effect of Support on the Conversion of Methane to Synthesis Gas over Supported Iridium Catalysts," Catal. Lett., 51, 163-167 (1998). https://doi.org/10.1023/A:1019065824331
-
Wisniewski, M., Boreave, A., and Gelin, P., "Catalytic
$CO_{2}$ Reforming of Methane over$Ir/Ce_{0.9}Gd_{0.1}O_{2-x}$ ," Catal. Commun., 6, 596-600 (2005). https://doi.org/10.1016/j.catcom.2005.05.008 -
Schulz, P. G., Gonzalez, M. G., Quincoces, C. E., and Gigola, C. E., "Methane Reforming with Carbon Dioxide. The Behavior of Pd/alpha-
$Al_{2}O_{3}$ and Pd-CeOx/alpha-$Al_{2}O_{3}$ Catalysts," Ind. Eng. Chem. Res., 44, 9020-9029 (2005). https://doi.org/10.1021/ie050517p -
Carrara, C., Munera, J., Lombardo, E. A., and Cornaglia, L. M., "Kinetic and Stability Studies of Ru/
$La_{2}O_{3}$ Used in the Dry Reforming of Methane," Top. Catal., 51, 98-106 (2008). https://doi.org/10.1007/s11244-008-9131-y - Bodrov, I. M., and Apel'baum, L. O., "Reaction Kinetics of Methane and Carbon Dioxide on a Nickel Surface," Kinet. Catal., 8, 326-330 (1967).
-
Guo, J. Z., Hou, Z. Y., Gao, J., and Zheng, X. M., "DRIFTS Study on Adsorption and Activation of
$CH_{4}$ and$CO_{2}$ on Ni/$SiO_{2}$ Catalyst with Various Ni Particle Sizes," Chin. J. Catal., 28(1), 22-26 (2007). https://doi.org/10.1016/S1872-2067(07)60009-6 -
Osaki, T., Masuda, H., and Mori, T., "Intermediate Hydrocarbon Species for the
$CO_{2}$ -$CH_{4}$ Reaction on Supported Ni Catalysts," Catal. Lett., 29, 33-37 (1994). https://doi.org/10.1007/BF00814249 -
Hu, Y. H., and Ruckenstein, E., "Transient Response Analysis via a Broadened Pulse Combined with A Step Change or An Isotopic Pulse. Application to
$CO_{2}$ Reforming of Methane over NiO/$SiO_{2}$ ," J. Phys. Chem. B, 101, 7563-7565 (1997). https://doi.org/10.1021/jp971711v - Randall, D., and Lee, S., The Polyurethane books, John Wiley & Sons, New York, 2002, pp. 113-126.
- Alper, H., and Butler, D. C. D., "Synthesis of Isocyanates from Carbamate Esters Employing Boron Trichloride," Chem. Commun., 2575-2576 (1998).
- Alper, H., and Valli, V. L. K., "A Simple, Convenient, and Efficient Method for the Synthesis of Isocyanates from Urethanes," J. Org. Chem., 60, 257-258 (1995). https://doi.org/10.1021/jo00106a044
- Chong, P. J., Janicki, S. Z., and Pertillo, P. A., "Multilevel Selectivity in the Mild and High-Yielding Chlorosilane-Induced Cleavage of Carbamates to Isocyanates," J. Org. Chem., 63, 8515-8521 (1998). https://doi.org/10.1021/jo981816+
- Tsuda, T., Sanada, S. I., and Saegusa, T., "Copper-promoted Deoxygenation of Carbon Dioxide by Isocyanide," J. Organometallic Chem., 116, C10-C12 (1976). https://doi.org/10.1016/S0022-328X(00)87206-X
- Kim, W. Y., Chang, J. S., Park, S. E., Ferrence, G., and Kubaik, C. P., "Mechanistic and IR Spectroelectrochemical Studies for Alkali Metal Ion Catalyzed Multiple Bond Metathesis Reactions of Carbon Dioxide," Chem. Lett., 1063-1064 (1998).
- Kilgore, U. J., Basuli, F., Huffmann, J. C., and Mindiola, D. J., "Aryl Isocyanate, Carbodiimide, and Isocyanide Prepared from Carbon Dioxide. A Metathetical Group-Transfer Tale Involving a Titanium-Imide Zwitterion," Inorg. Chem., 45, 487- 489 (2006). https://doi.org/10.1021/ic052065e
-
Sita, L. R., J. R., and Xi, R., "Facile Metathetical Exchange between Carbon Dioxide and the Divalent Group 14 Bisamides
$M[N(SiMe_{3})_{2}]_{2}$ (M = Ge and Sn)," J. Am. Chem. Soc., 118, 10912-10913 (1996). https://doi.org/10.1021/ja962281+ - Horvath, M. J., Saylik, D., and Elmes, P. S., "A Mitsunobubased Procedure for the Preparation of Alkyl and Hindered Aryl Isocyanates from Primary Amines and Carbon Dioxide under Mild Conditions," Tetrahedron Lett., 40, 363-366 (1999). https://doi.org/10.1016/S0040-4039(98)02312-0
- Saylik, D., Horvath, M. J., Elmes, P. S., Jackson, W. R., Lovel, C. G., and Moody, K., "Preparation of Isocyanates from Primary Amines and Carbon Dioxide Using Mitsunobu Chemistry," J. Org. Chem., 64, 3940-3946 (1999). https://doi.org/10.1021/jo982362j
- Anatastas, P. T., Zimmerman, and Kirchhoff, M. M., "Origins, Current Status, and Future Challenges of Green Chemistry," Acc. Chem. Res., 35, 686-694 (2002). https://doi.org/10.1021/ar010065m
- Trost, B. M., "On Inventing Reactions for Atom Economy," Acc. Chem. Res., 35, 695-705 (2002). https://doi.org/10.1021/ar010068z
-
Grodkowski, J., Behar, D., Neta, P., and Hambright, P., "Iron Porphyrin-Catalyzed Reduction of
$CO_{2}$ . Photochemical and Radiation Chemical Studies," J. Phys. Chem. A, 101, 248-254 (1997). https://doi.org/10.1021/jp9628139 -
Behar, D., Dhanasekaran, T., Neta, P., Hosten, C. M., Ejeh, D., Hambright, P., and Fujita, E., "Cobalt Porphyrin Catalyzed Reduction of
$CO_{2}$ . Radiation Chemical, Photochemical, and Electrochemical Studies," J. Phys. Chem. A, 102, 2870-2877 (1998). https://doi.org/10.1021/jp9807017 -
Grodkowski, J., Dhanasekaran, T., Neta, P., Hambright, P., Brunschwig, B. S., Shinozaki, K., and Fujitam, E., "Reduction of Cobalt and Iron Phthalocyanines and the Role of the Reduced Species in Catalyzed Photoreduction of
$CO_{2}$ ," J. Phys. Chem. A, 104, 11332-11339 (2000). https://doi.org/10.1021/jp002709y -
Grodkowski, J., and Neta, P., "Cobalt Corrin Catalyzed Photoreduction of
$CO_{2}$ ," J. Phys. Chem. A, 104, 1848-1853 (2000). https://doi.org/10.1021/jp9939569 -
Grodkowski, J., Neta, P., Fujita, E., Mhammed, A., Simkhovich, L., and Gross, Z., "Reduction of Cobalt and Iron Corroles and Catalyzed Reduction of
$CO_{2}$ ," J. Phys. Chem. A, 106, 4772-4778 (2002). https://doi.org/10.1021/jp013668o -
Hawecker, J., Lehn, J. M., and Ziessel, R., "Efficienct Photochemical Reduction of
$CO_{2}$ to CO by Visible-Light Irradiation of Systems Containing$Re(bipy)(CO)_{3}X$ or$Re(bipy)_{3}^{2+}-CO^{2+}$ Combinations as Homogeneous Catalysts," J. Chem. Soc., Chem. Commun., 536-538 (1983). -
Hori, H., Johnson, F. P. A., Koike, K., Ishitani, O., and Ibusuki, T., "Efficient Photocatalytic
$CO_{2}$ Reduction using$[Re(bpy)(CO)_{3}{P(OEt)_{3}}]^{+}$ ," J. Photochem. Photobiol. A, 96, 171-174 (1996). https://doi.org/10.1016/1010-6030(95)04298-9 -
Hori, H., Johnson, F. P. A., Koike, K., Takeuchi, K., Ibusuki, T., and Ishitani, O., "Photochemistry of
$[Re(bipy)(CO)_{3}(PPh_{3})]^{+}$ (bipy = 2,2'-bipyridine) in the presence of Triethanolamine Associated with Photoreductive Fixation of Carbon Dioxide: Participation of a Chain Reaction Mechanism," J. Chem. Soc. Dalton Trans., 1019-1024 (1997). -
Takeda, H., Koike, K., Inoue, H., and Ishitani, O., "Development of an Efficient Photocatalytic System for
$CO_{2}$ Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies," J. Am. Chem. Soc., 130, 2023-2031 (2008). https://doi.org/10.1021/ja077752e -
Koike, K., Hori, H., Ishizuka, M., Westwell, J. R., Takeuchi, W., Ibusuki, T., Enjouji, K., Konno, H., Skamoto, K., and Ishitani, O., "Key Process of the Photocatalytic Reduction of
$CO_{2}$ using$[Re(4,4'-X_{2}-bipyridine)(CO)_{3}PR_{3}]^{+}$ (X =$CH_{3}$ , H,$CF_{3}$ and$PR_{3}$ = Phosphorus Ligands): Dark Reaction of the One-Electron-Reduced Complexes with$CO_{2}$ ," Organometallics, 16, 5724-5729 (1997). https://doi.org/10.1021/om970608p - Tsubaki, H., Sekine, A., Ohashi, Y., Koike, K., Takeda, H., and Ishitani, O., "Control of Photochemical, Photophysical, Electrochemical, and Photocatalytic Properties of Rhenium(I) Complexes Using Intramolecular Weak Interactions between Ligands," J. Am. Chem. Soc., 127, 15544-15555 (2005). https://doi.org/10.1021/ja053814u
-
Tsubaki, H., Sugawara, A., Takeda, H., Gholamkhass, B., Koike, K., Nozaki, K., Pac, C., Turner, J. J., and Westwell, J. R., "Photocatalytic Reduction of
$CO_{2}$ using cis,trans-$[Re(dmbpy)(CO)_{2}(PR_{3})(PR'_{3})]^{+}$ (dmbpy = 4,4'-dimethyl-2,2'-bipyridine)," Res. Chem. Intermed., 33(1-2), 37-48 (2007). https://doi.org/10.1163/156856707779160771 -
Willner, I., Maidan, R., Mandler, D., Durr, H., Dorr, G., and Zengerle, K., "Photosensitized Reduction of
$CO_{2}$ to$CH_{4}$ and$H_{2}$ Evolution in the Presence of Ruthenium and Osmium Colloids: Strategies To Design Selectivity of Products Distribution," J. Am. Chem. Soc., 109(26), 6080-6086 (1987). https://doi.org/10.1021/ja00254a029 -
Maidan, R., and Willner, I., "Photoreduction of
$CO_{2}$ to$CH_{4}$ in Aqueous Solutions Using Visible Light," J. Am. Chem. Soc., 108(25), 8100-8101 (1986). https://doi.org/10.1021/ja00285a043 -
Ishida, H., Tanaka, K., Tanaka, T., "Electrochemical
$CO_{2}$ Reduction Catalyzed by$[Ru(bpy)_{2}(CO)_{2}]^{2+}$ and$[Ru(bpy)_{2}(CO)Cl]^{+}$ . The Effect of pH on the Formation of CO and HCOOH," Organometallics, 5, 181-186 (1986). -
Ishida, H., Terada, T., Tanaka, K., and Tanaka, T., "Photochemical
$CO_{2}$ Reduction Catalyzed by$[Ru(bpy)_{2}(CO)_{2}]^{2+}$ using Triethanolamine and 1-benzyl-1,4-dihydronicotinamide as an Electron Donor," Inorg. Chem., 29, 905-911 (1990). https://doi.org/10.1021/ic00330a004 -
Ishida, H., Tanaka, K., and Tnanka, T., "Photochemical
$CO_{2}$ Reduction by an NADH Model Compound in the Presence of$[Ru(bpy)_{3}]^{2+}$ and$[Ru(bpy)_{2}(CO)_{2}]^{2+}$ (bpy = 2,2'-bipyridine) in$H_{2}O$ /DMF," Chem. Lett., 17(2), 339-342 (1988). https://doi.org/10.1246/cl.1988.339 - Lehn, J.-M., and Ziessel, R., "Photochemical Reduction of Carbon dioxide to Formate Catalyzed by 2,2'-bipyridine- or l,10-phenanthroline-ruthenium(II) Complexes," J. Organomet. Chem., 29, 157-173 (1990).
- Tinnemans, A. H. A., Koster, T. P. M., Thewissen, D. H. M. W., and Mackor, A., "Tetraaza-macrocyclic Cobalt(II) and Nickel( II) Complexes as Electron-Transfer Agents in the Photo (electro)chemical and Electrochemical Reduction of Carbon Dioxide," Recueil des Travaux Chimiques des Pays-Bas, 103 (10), 1288-295 (1984).
- Grant, J. L., Goswami, K., Spreer, L. O., Otvos, J. W., and Calvin, M., "Photochemical Reduction of Carbon Dioxide to Carbon Monoxide in Water using a Nickel(II) Tetra-azamacrocycle Complex as Catalyst," J. Chem. Soc. Dalton Trans., 2105- 2109 (1987).
- Kimura, E., Wada, S., Shionoya, M., and Okazaki, Y., "New Series of Multifunctionalized Nickel(II)-Cyclam (Cyclam = 1,4,8,1l-Tetraaza-cyclotetradecane) Complexes. Application to the Photoreduction of Carbon Dioxide," Inorg. Chem., 33, 770-778 (1994). https://doi.org/10.1021/ic00082a025
-
Gholamkhass, B., Mametsuka, H., Koike, K., Tanabe, T., Furue, M., and Ishitani, O., "Architecture of Supramolecular Metal Complexes for Photocatalytic
$CO_{2}$ Reduction: Ruthenium- Rhenium Bi- and Tetranuclear Complexes," Inorg. Chem., 44, 2326-2336 (2005). https://doi.org/10.1021/ic048779r - Sato, S., Koike, K., Inoue, H., and Ishitani, O., "Highly Efficient Supramoecular Photocatalysts for CO Reduction using Visible Light," Photochem. Photobiol. Sci., 6, 454-461 (2007). https://doi.org/10.1039/b613419j
-
Matsuoka, S., Yamamoto, K., Ogata, T., Kusaba, M., Nakashima, N., Fujita, E., and Yanagida, S., "Efficient and Selective Electron Mediation of Cobalt Complexes with Cyclam and Related Macrocycles in the p-Terphenyl-Catalyzed Photoreduction of
$CO_{2}$ ," J. Am. Chem. Soc., 115, 601-609 (1993). https://doi.org/10.1021/ja00055a032 -
Ogata, T., Yamamoto, Y., Wada, Y., Murakoshi, K., Kusaba, M., Nakashima, N., Ishida, A., Takamuku, S., and Yanagida, S., "Phenazine-Photosensitized Reduction of
$CO_{2}$ Mediated by a Cobalt-Cyclam Complex through Electron and Hydrogen Transfer," J. Phys. Chem., 99, 11916-11922 (1995). https://doi.org/10.1021/j100031a020 - Inoue, T., Fujishima, A., Konishi, S., and Honda, K., "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277, 637-638 (1979). https://doi.org/10.1038/277637a0
-
Koci, K., Obalova, L., Matejova, L., Placha, D., Lacny, Z., Jirkovsky, J., and Solcova, O., "Effect of
$TiO_{2}$ Particle Size on the Photocatalytic Reduction of$CO_{2}$ ," Appl. Catal. B., 89, 494-502 (2009). https://doi.org/10.1016/j.apcatb.2009.01.010 -
Wu, J. C. S., "Photocatalytic Reduction of Greenhouse Gas
$CO_{2}$ to Fuel," Catal. Surv. Asia, 13(1), 30-40 (2009). https://doi.org/10.1007/s10563-009-9065-9 -
Nguyen, T-V., Wu, J. C. S., and Chiou, C-H., "Photoreduction of
$CO_{2}$ over Ruthenium Dye-sensitized$TiO_{2}$ -based Catalysts under Concentrated Natural Sunlight," Catal. Commun., 9, 2073-2076 (2008). https://doi.org/10.1016/j.catcom.2008.04.004 - Subrahmanyam, M., Kaneco, S., and Alonso-Vante, N., "A screening for the Photo Reduction of Carbon Dioxide Supported on Metal Oxide Catalysts for C1-C3 Selectivity," Appl. Catal. B., 23(2-3), 169-174 (1999). https://doi.org/10.1016/S0926-3373(99)00079-X
-
Liu, B-J., Torimoto, T., and Yoneyama, H., "Photocatalytic Reduction of Carbon Dioxide in the Presence of Nitrate using
$TiO_{2}$ Nanocrystal Photocatalyst Embedded in$SiO_{2}$ Matrices," J. Photochem. Photobiol. A, 115, 227-230 (1998). https://doi.org/10.1016/S1010-6030(98)00272-X -
Kaneco, S., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic Reduction of High Pressure Carbon Dioxide using
$TiO_{2}$ Powders with a Positive Hole Scavenger," J. Photochem. Photobiol. A, 115, 223-226 (1998). https://doi.org/10.1016/S1010-6030(98)00274-3 -
Dey, G. R., Belapurkar, A. D., and Kishore, K., "Photo-catalytic Reduction of Carbon Dioxide to Methane using
$TiO_{2}$ as Suspension in Water," J. Photochem. Photobiol. A, 163, 503-508 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.022 -
Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic Reduction of
$CO_{2}$ using$TiO_{2}$ Powders in Supercritical Fluid$CO_{2}$ ," Energy, 24, 21-30 (1999). https://doi.org/10.1016/S0360-5442(98)00070-X -
Liu, B. J., Torimoto, T., Matsumoto, H., and Yoneyama, H., "Effect of Solvents on Photocatalytic Reduction of Carbon Dioxide using
$TiO_{2}$ Nanocrystal Photocatalyst Embedded in$SiO_{2}$ Matrices," J. Photochem. Photobiol. A, 108, 187-192 (1997). https://doi.org/10.1016/S1010-6030(97)00082-8 -
Tseng, I. H., Chang, W.-C., and Wu, J. C. S., "Photoreduction of
$CO_{2}$ using Sol-gel Derived Titania and Titania-supported Copper Catalysts," Appl. Catal. B, 37, 37-48 (2002). https://doi.org/10.1016/S0926-3373(01)00322-8 - Adachi, K., Ohta, K., and Mizuno, M., "Photocatalytic Reduction of Carbon Dioxide to Hydrocarbon using Copperloaded Titanium Dioxide," Solar Energy, 53, 187-190 (1994). https://doi.org/10.1016/0038-092X(94)90480-4
-
Ishitani, O., Inoue, C., Suzuki, Y., and Ibusuki, T., "Photocatalytic Reduction of Carbon Dioxide to Methane and Acetic Acid by an Aqueous Suspension of Metal Deposited
$TiO_{2}$ ," J. Photochem. Photobiol. A, 72, 269-271 (1993). https://doi.org/10.1016/1010-6030(93)80023-3 -
Slamet, Nasution, H. W., Purnama, E. Kosela, S., and Gunlazuardi, J., "Photocatalytic Reduction of
$CO_{2}$ on Copper-doped Titania Catalysts Prepared by Improved-impregnation Method," Catal. Commun., 6, 313-319 (2005). https://doi.org/10.1016/j.catcom.2005.01.011 -
Shioya, Y., Ikeue, K., Ogawa, M., and Anpo, M., "Synthesis of Transparent Ti-containing Mesoporous Silica Thin Film Materials and Their Unique Photocatalytic Activity for the Reduction of
$CO_{2}$ with$H_{2}O$ ," Appl. Catal. A, 254, 251-259 (2003). https://doi.org/10.1016/S0926-860X(03)00487-3 -
Ikeue, K., Nozaki, S., Ogawa, M., and Anpo, M., "Characterization of Self-standing Ti-containing Porous Silica Thin Films and Their Reactivity for the Photocatalytic Reduction of
$CO_{2}$ with$H_{2}O$ ," Catal. Today, 74, 241-248 (2002). https://doi.org/10.1016/S0920-5861(02)00027-5 -
Ikeue, K., Yamashita, H., Anpo, M., and Takewaki, T., "Photocatalytic Reduction of
$CO_{2}$ with$H_{2}O$ on Ti-$\beta$ Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties," J. Phys. Chem. B, 105, 8350-8355 (2001). https://doi.org/10.1021/jp010885g -
Xia, X.-H., Jia, Z-J., Yu, W., Liang, Y., Wang, Z., and Ma, L.-L., "Preparation of Multi-walled Carbon Nanotube Supported
$TiO_{2}$ and its Photocatalytic Actvitity in the Reduction of$CO_{2}$ with$H_{2}O$ ," Carbon, 45, 717-721 (2007). https://doi.org/10.1016/j.carbon.2006.11.028 -
Kim, W., Seok, T., and Choi, W., "Nafion Layer-enhanced Photosynthetic Conversion of
$CO_{2}$ into Hydrocarbons on$TiO_{2}$ Nanoparticles," Energy Environ. Sci., 5, 6066-6070 (2012) https://doi.org/10.1039/c2ee03338k -
Tsuneoka, H., Teramura, K., Shishido, T., and Tanaka, T., "Adsorbed Species of
$CO_{2}$ and$H_{2}$ on$Ga_{2}O_{3}$ for the Photocatalytic Reduction of$CO_{2}$ ," J. Phys. Chem. C, 114, 8892- 8898 (2010). https://doi.org/10.1021/jp910835k -
Teramura, K., Okuoka, S., Tsuneoka, H., Shishido, T., and Tanaka, T., "Photocatalytic Reduction of
$CO_{2}$ using$H_{2}$ as Reductant over$ATaO_{3}$ Photocatalysts (A = Li, Na, K)," Appl. Catal. B, 96, 565-568 (2010). https://doi.org/10.1016/j.apcatb.2010.03.021 - Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T., and Yoshida, S. "Photoreduction of Carbon Dioxide by Hydrogen over Magnesium Oxide," Phys. Chem. Chem. Phys., 3, 1108-1113 (2001). https://doi.org/10.1039/b008887k
-
Kohno, Y., Tanaka, T., Funabiki, T., and Yoshida, S., "Photoreduction of
$CO_{2}$ with$H_{2}$ over$ZrO_{2}$ . A Study on Interaction of Hydrogen with Photoexcited$CO_{2}$ ," Phys. Chem. Chem. Phys., 2, 2635-2639 (2000). https://doi.org/10.1039/b001642j -
Liu, W., Huang, B., Dai, Y., Zhang, X., Qin, X., Jiang, M., and Whangbo, M.-H., "Selective Ethanol Formation from Photocatalytic Reduction of Carbon Dioxide in Water with
$BiVO_{4}$ Photocatalyst," Catal. Commun., 11, 210-213 (2009). https://doi.org/10.1016/j.catcom.2009.10.010 -
Pan, P.-W., and Chen, Y.-W., "Photocatalytic Reduction of Carbon Dioxide on NiO/
$InTaO_{4}$ under Visible-light Irradiation," Catal. Commun., 8, 1546-1549 (2007). https://doi.org/10.1016/j.catcom.2007.01.006 -
Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., Yanagida, S., Okada, T., and Kobayashi, H., "Effect of Surface Structures on Photocatalytic
$CO_{2}$ Reduction Using Quantized CdS Nanocrystallites," J. Phys. Chem. B, 101, 8270-8278 (1997). https://doi.org/10.1021/jp971621q -
Yanagida, S., Kanemoto, M., Ishihara, K. I., Wada, Y., Sakata, T., and Mori, H., "Visible-Light Induced Photoreduction of
$CO_{2}$ with CdS Nanocrystallites- Importance of the Morphology and Surface Structures Controlled through Solvation by N, N-Dimethylformamide," Bull, Chem. Soc. Jpn., 70, 2063-2070 (1997). https://doi.org/10.1246/bcsj.70.2063 - Kanemoto, M., Hosokawa, H., Wada, Y., Murakoshi, K., Yanagida, S., Sakata, T., Mori, H., Ishikawa, M., and Kobayashi, H., "Role of Surface in the Photoreduction of Carbon Dioxide Catalysed by Colloidal ZnS Nanocrystallites in Organic Solvent," J. Chem. Soc, Faraday Trans., 92(13), 2401-2411 (1996). https://doi.org/10.1039/ft9969202401
- Inoue, H., Moriwaki, H., Maeda, K., and Yoneyama, H., "Photoreduction of Carbon Dioxide using Chalcogenide Semiconductor Microcrystals," J. Photoochem. Photobiol. A, 86, 191- 196 (1995). https://doi.org/10.1016/1010-6030(94)03936-O
-
Wang, C., Thompson, R. L., Baltrus, J., and Matranga, C., "Visible-Light Photoreduction of
$CO_{2}$ Using CdSe/Pt/$TiO_{2}$ Heterostructured Catalysts," J. Phys. Chem. Lett., 1, 48-53 (2010). https://doi.org/10.1021/jz9000032 -
Ozcan, O., Yukruk, F., Akkaya, E., and Uner, D., "Dye Sensitized
$CO_{2}$ Reduction over Pure and Platinized$TiO_{2}$ ," Top. Catal., 44(4), 523-528 (2007). https://doi.org/10.1007/s11244-006-0100-z -
Woolerton, T. W., Sheard, S., Reisner, E., Pierce, E., Ragsdale, S. W., and Armstrong, F. A., "Efficient and Clean Photoreduction of
$CO_{2}$ to CO by Enzyme-modified$TiO_{2}$ Nanoparticles Using Visible Light," J. Am. Chem. Soc., 132, 2132-2133 (2010). https://doi.org/10.1021/ja910091z - Halmann, M., "Photoelectrochemical Reduction of Aqueous Carbon Dioxide on p-type Gallium Posphide in Liquid Junction Solar Cells," Nature, 275, 115-116 (1978). https://doi.org/10.1038/275115a0
- Inoue, T., Fujishima, A., Konishi, S., and Honda, K., "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277, 637-638 (1979). https://doi.org/10.1038/277637a0
- Taniguchi, I., Aurian-blajeni, B., and Bockris, J. O., "Photoaided Reduction of Carbon Dioxide to Carbon Monoxide," J. Electroanal. Chem., 157(2), 179-182 (1983).
- Canfield, D., and Frese, J. K. W., "Reduction of Carbon Dioxide to Methanol on n- and p-GaAs and p-InP: Effect of Crystal Face, Electrolyte and Current Density," J. Electrochem. Soc., 130(8), 1772-1773 (1983). https://doi.org/10.1149/1.2120090
- Ikeda, S., Yoshida, M., and Ito, K. "Photoelectrochemical Reduction Products of Carbon Dioxide at Metal Coated p-GaP Photocathodes in Aqueous Electrolytes" Bull. Chem. Soc. Jpn., 58(5), 1353-1357 (1985). https://doi.org/10.1246/bcsj.58.1353
- Ikeda, S., Saito, Y., Yoshida, M., Noda, H., Maeda, M., and Ito, K., "Photoelectrochemical Reduction Products of Carbon Dioxide at Metal Coated p-Gap Photocathodes in Non-aqueous Electrolytes," J. Electroanal. Chem., 260, 335-345 (1989). https://doi.org/10.1016/0022-0728(89)87148-7
- Hinogami, R., Nakamura, Y., Yae, S., and Nakato, Y., "An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Mo dification with Small Metal Particles," J. Phys. Chem. B, 102, 974-980 (1998). https://doi.org/10.1021/jp972663h
-
Kaneco, S., Katsumata, H., Suzuki, T., and Ohta, K., "Photoelectrocatalytic Reduction of
$CO_{2}$ in LiOH/Methanol at Metalmodified p-InP Electrodes," Appl. Catal. B, 64, 139-145 (2006). https://doi.org/10.1016/j.apcatb.2005.11.012 - Taniguchi, Y., Yoneyama, H., and Tamura, H., "Photoelectrochemical Reduction of Carbon Dioxide at p-Type Gallium Phosphide Electrodes in the Presence of Crown Ether," Bull. Chem. Soc. Jpn., 55(7), 2034-2039 (1982). https://doi.org/10.1246/bcsj.55.2034
- Bockris, J. O., and Wass, J. C., "On the Photoelectrocatalytic Reduction of Carbon Dioxide," Mater. Chem. Phys., 22(3-4), 249-330 (1989). https://doi.org/10.1016/0254-0584(89)90001-1
-
Parkinson, B. A., and Weaver, P. F., "Photoelectrochemical Pumping of Enzymatic
$CO_{2}$ Reduction," Nature, 309, 148-149 (1984). https://doi.org/10.1038/309148a0 - Bradley, M. G., and Tysak, T., "p-Type Silicon Based Photoelectrochemical Cells for Optical Energy Conversion: Electrochemistry of Tetra-azomacrocyclic Metal Complexes at Illuminated," J. Electroanal. Chem., 135, 153-157 (1982). https://doi.org/10.1016/0022-0728(82)90012-2
-
Beley, M., Collin, J.-P., Sauvage, J.-P., Petit, J.-P., and Chartier, P., "Photoassisted Electro-reduction of
$CO_{2}$ on p-GaAs in the Presence of Ni$cyclam^{2+}$ ," J. Electroanal. Chem., 206, 333-339 (1986). https://doi.org/10.1016/0022-0728(86)90281-0 -
Petit, J.-P., Chartier, P., Beley, M., and Deville, J.-P., "Molecular Catalysts in Photoelectrochemical Cells: Study of an Efficient System for the Selective Photoelectroreduction of
$CO_{2}$ : p-GaP or$p-GaAs/Ni(cyclam)^{2+}$ , Aqueous Medium," J. Electroanal. Chem., 269, 267-281 (1989). https://doi.org/10.1016/0022-0728(89)85137-X -
Kumar, B., Smieja, J. M., and Kubiak, C. P., "Photoreduction of
$CO_{2}$ on p-type Silicon using$Re(Bipy-But)(CO)_{3}Cl$ : Photovoltages Exceeding 600 mV for the Selective Reduction of$CO_{2}$ to CO," J. Phys. Chem. C, 114, 14220-14223 (2010). https://doi.org/10.1021/jp105171b -
Barton, E. E., Rampulla, D. M., and Bocarsly, A. B., "Selective Solar-driven Reduction of
$CO_{2}$ to Methanol using a Catalyzed p-GaP Based Photoelectrochemical Cell," J. Am. Chem. Soc., 130, 6342-6344 (2008). https://doi.org/10.1021/ja0776327 -
Cabrera, C. R., and Abruna, H. D., "Electrocatalysis of
$CO_{2}$ Reduction at Surface Modified Metallic and Semiconducting Electrodes," J. Electroanal. Chem., 209, 101-107 (1986). https://doi.org/10.1016/0022-0728(86)80189-9 -
Arai, T., Sato, S., Uemura, K., Morikawa, T., Kajino, T., and Motohiro, T., "Photoelectrochemical Reduction of
$CO_{2}$ in Water under Visible-light Irradiation by a p-Type InP Photocathode Modified with an Electropolymerized Ruthenium Complex," Chem. Commun., 46, 6944-6946 (2010). https://doi.org/10.1039/c0cc02061c
피인용 문헌
- Systems Engineering-based Approach In Developing Concept Design Of Carbon Capture System vol.9, pp.2, 2013, https://doi.org/10.14248/JKOSSE.2013.9.2.023
- 용융탄산염 전해질에서 이산화탄소의 전기화학적 전환에 전극 재질이 미치는 영향 vol.41, pp.11, 2017, https://doi.org/10.3795/ksme-b.2017.41.11.727
- CO2 메탄화 반응을 위한 Ni 기반 Disk Type 촉매의 제조 최적화에 관한 연구 vol.28, pp.1, 2012, https://doi.org/10.5322/jesi.2019.28.1.65