DOI QR코드

DOI QR Code

수증기개질 가스화반응을 이용한 나왕톱밥으로부터 수소제조특성

Production of Hydrogen by Thermochemical Transition of Lauan Sawdust in Steam Reforming Gasification

  • 박성진 (서울과학기술대학교 화공생명공학과) ;
  • 김래현 (서울과학기술대학교 화공생명공학과) ;
  • 신헌용 (서울과학기술대학교 화공생명공학과)
  • Park, Sung-Jin (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Kim, Lae-Hyun (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Shin, Hun-Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 투고 : 2012.06.04
  • 심사 : 2012.07.09
  • 발행 : 2012.10.01

초록

바이오매스를 이용하여 수소 생산을 목적으로 가스화 반응기를 이용하여 라왕 톱밥의 수증기 개질을 이용한 가스화 연구를 수행하였다. 1 m의 높이와 10.2 cm의 내경을 갖는 고정층 반응기에서 촉매와 온도에 따른 가스화반응에 미치는 영향을 분석하였다. 가스화반응 중에 수증기개질효과를 위하여 일정량의 스팀을 주입하였다. 톱밥과 탄산칼륨($K_2CO_3$), 탄산나트륨($Na_2CO_3$), 탄산칼슘($CaCO_3$), 탄산나트륨+탄산칼륨, 탄산마그네슘+탄산칼슘 촉매를 8:2의 일정한 비율로 혼합한 후 고정층 가스화 반응기에 주입하여 $400{\sim}700^{\circ}C$의 온도에서 가스화반응에 따른 생성되는 기체의 조성을 기체 크로마토그래피를 이용하여 분석하였다. 촉매를 사용하였을 때 비촉매의 경우보다 수소, 메탄, 일산화탄소의 생성분율이 높게 나타났다. 온도의 증가에 따라 생성되는 수소, 메탄, 일산화탄소의 생성분율이 증가하였으며, $Na_2CO_3$ 촉매에서 가장 높은 수소수율을 나타났다.

Lauan sawdust was gasified by steam reforming for hydrogen production from biomass waste. The fixed bed gasification reactor with 1m height and 10.2 cm diameter was utilized for the analysis of temperature and catalysts effect. Steam was injected to the gasification reactor for the steam reforming effect. Lauan sawdust was mixed with potassium carbonate, sodium carbonate, calcium carbonate, sodium carbonate + potassium carbonate and magnesium carbonate + calcium carbonate catalysts of constant mass fraction of 8:2 which was injected to the fixed gasification equipment. The compositions of production gas of gasification reaction were analyzed at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. Fractions of hydrogen, methane and carbon monoxide gas in the production gas increased when catalysts were used. Fractions of hydrogen, methane and carbon monoxide gas were increased with increasing temperature. The highest hydrogen yield was obtained with sodium carbonate catalyst.

키워드

참고문헌

  1. Kim, D. H., Lee, Y. J., Yu, M. J., Park, D. W., Kim, M. S. and Sang, B. I., "Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge," J. of KSEE, 28(4), 362-367(2006).
  2. Lee, S. H., Kim, Y. G., Hong, J. C., Yoon, S. J., Choi, Y. C. and Lee, J. G., "Thermochemical Conversion of Biomass in a Fluidized Bed Pyrolyzer," Proceeding of the Korean Society for New and Renewable Energy, 467-470(2005).
  3. Kim, R. H., Energy transition and industrialization of biomass, Ajin Publishing Co., Ltd, Seoul(2005).
  4. Son, J. I. and Park, D. W., Hydrogen energy production Technology, Ajin Publishing Co., Ltd, Seoul(2007).
  5. Lee, S. G., Lim, S. K. and Bae, J. M., "Heat and Mass Transfer Characteristics in Steam Reforming Reactor," Proceeding of the Korean Society for New and Renewable Energy, 340-343(2006).
  6. Wei, L., Xu, S., Zhang, L., Liu, C., Zhu, H. and Liu, S., "Steam Gasification of Biomass for Hydrogen-rich in a Free-fall Reactor," Int. J. Hydrog. Energy, 32(1), 24-31 (2007). https://doi.org/10.1016/j.ijhydene.2006.06.002
  7. Jeon, J.-K., Kim, J. M., Park, Y.-K., Park, H. J., Myung, S. Kim, J.-S., Choi, J., Kim, S. and Eom, Y., "Direct Catalytic Pyrolysis of Biomass using Solid Acid Catalysts," J. Korean Ind. Eng. Chem., 15(8), 901-906(2004).
  8. Jung, H. J., Kim, C. H., Son, J.-E. Kim, L.-H. and Shin, H. Y. "Production of Hydrogen Gas by Thermochemical Transition of Lauan in Fixed Bed Gasification," J. Korean Ind. Eng. Chem., 19(2) 209-213(2008).
  9. Altun, N. E., Hicyilmaz, C. and Kok, M. V., "Effect of Particle Size and Heating Rate on the Pyrolysis of Silopi Asphaltite," J. Anal. Appl. Pyrolysis, 67(2), 369-379(2003). https://doi.org/10.1016/S0165-2370(02)00075-X
  10. Myung, S., Eom, Y., Dong, J.-I., Park,, Y.-K., Kang, B. S. and Jeon, J.-K., "Characteristics of Thermal Decomposition of Major Components of Biomass Isolated from Wood," J. Korean Ind. Eng. Chem., 15(8), 896-900(2004).
  11. Yun, J. H., Kim, W. H., Keel, S. I., Min, T. J. and Roh S. A. "Coal Gasification with High Temperature Steam," J. Korean Resources Recycling, 16(6), 28-33(2007).
  12. Sutton, D., Kelleher, B. and Ross, R. H., "Review of Literature on Catalysts for Biomass Gasification," Fuel Process. Technol., 73(2) 155-173(2001). https://doi.org/10.1016/S0378-3820(01)00208-9
  13. Baron, R. E., Porter, J. H. and Hammond, O. H., Chemistry of Coal Utilization, John Wiley & Sons, p. 1495(1981).

피인용 문헌

  1. 탄산화 및 저온 결정화를 통한 나트륨 농축수로부터 나트륨 화합물 합성 vol.29, pp.4, 2020, https://doi.org/10.7844/kirr.2020.29.4.58