DOI QR코드

DOI QR Code

어트리션 밀과 DMF 용매를 이용한 폐 인쇄회로기판에서 분리된 재생 유리섬유의 재활용

Recycling of Separate Glass Fiber from Waste Printed Circuit Boards Using Attrition Mill and DMF

  • 김종석 (전북대학교 화학공학부) ;
  • 이재천 (한국지질자원연구원 광물자원연구본부) ;
  • 정진기 (한국지질자원연구원 광물자원연구본부)
  • Kim, Jong-Seok (School of Chemical Engineering, Chonbuk National University) ;
  • Lee, Jae-Cheon (Mineral Resource Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jeong, Jin-Ki (Mineral Resource Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2012.04.29
  • 심사 : 2012.07.09
  • 발행 : 2012.10.01

초록

폐 전자제품의 양이 지속적으로 증가하므로 폐 인쇄회로기판(WPCBs: waste printed circuit boards)의 재활용에서 금속과 유리섬유 및 에폭시 수지를 분리하는 방법에 대한 연구가 필요하다. 본 연구에서는 WPCBs로부터 금속과 유리섬유 및 에폭시 수지를 분리하기위해 dimethylformamide 용매와 어트리션 밀 반응기를 사용하였다. WPCBs에서 유리섬유의 분리는 다양한 교반기를 이용하여 교반속도를 300~600 rpm에서 반응시간을 1~2 h에서 반응을 수행하였다. WPCBs에서 에폭시 수지의 분리도를 재생 유리섬유의 열 중량 분석을 통해 분석하였으며 기계화학적 방법인 어트리션밀 교반기에서 에폭시 수지의 분리도가 증가하였다. 재생 유리섬유를 보강재로 재활용하기 위하여 재생 유리섬유/불포화 폴리에스테르 수지 복합재료로 적용하였다.

In recent years, recycling process has come to be necessary for separating metals, glass fibers and polymer from WPCBs (waste printed circuit boards) due to an increasing amount of electronic device waste. In this study, dimethylformamide (DMF) and attrition mill reactor were used to separate the component such as metals, glass fiber and epoxy resin from WPCBs. Separation of glass fiber from WPCBs was carried out under stirring rates 300~600 revolution per minute (rpm) for 1~2 h as the various agitator. The recycled glass fibers (RGF) were analyzed by thermogravimetric analyzer (TGA) for degree of separation of epoxy resin in the WPCBs. The degree of separation of epoxy resin of WPCBs increased in attrition mill agitator as a mechanochemical process for recycling WPCBs. The RGF separated in the WPCBs was applied as a reinforcement in the RGF/unsaturated polyester composites to reuse as a reinforcement.

키워드

참고문헌

  1. Yoo, J. M., Jeong, J. K., Yoo, K. K., Lee, J. C. and Kim, W. B., "Enrichment of the Metallc Components from Waste Printed Circuit Boards by a Mechanical Separation Precess Using a Stamp Mill," Wast. Manage., 29, 1132(2009). https://doi.org/10.1016/j.wasman.2008.06.035
  2. Lee, J. C., Song, H. T. and Yoo, J. M., "Present Status of the Recycling of Waste Electrical and Electronic Equipment in Korea," Resour. Conserv. Recycl., 50, 380(2007). https://doi.org/10.1016/j.resconrec.2007.01.010
  3. Kelly, E. J., "Base Material Components," in Printed Circuits Handbook, C. F. Coombs, Editor, McGraw-Hill, New York, Vol 1, Chap. 7(2008).
  4. Zang, S. and Forssberg, E., "Mechanical Separation-oriented Characterization of Electronic Scrap," Resour. Conserv. Recycl., 21, 247(1997). https://doi.org/10.1016/S0921-3449(97)00039-6
  5. Guo, J., Li, J., Rao, Q. and Xu, Z., "Phenolic Molding Compound Filled with Nonmetals of Waste PCBs," Environ. Sci. Technol., 42, 624(2008). https://doi.org/10.1021/es0712930
  6. Hall, W. J. and Williams, P. T., "Separation and Recovery of Materials from Scrap Printed Circuit Boards," Resour. Conserv. Recycl., 51, 691(2007).
  7. Guo, J., Guo, Jie. and Xu, Z., "Recycling of Non-metallic Fractions from Waste Printed Circuit Boards: A Review," J. Hazard. Mater., 168, 567(2009). https://doi.org/10.1016/j.jhazmat.2009.02.104
  8. Sato, Y., Kondo, Tsujita, Y. K. and Kawai, N., "Degradation Behaviour and Recovery of Bisphenol-A from Epoxy Resin and Polycarbonate Resin by Liquid-phase Chemical Recycling," Polym. Degrad. Stabil., 89, 317(2005). https://doi.org/10.1016/j.polymdegradstab.2005.01.015
  9. Koyanaka, S., Endoh, S. and Ohya, H., "Effect of Impact Velocity Control on Selective Grinding of Waste Printed Circuit Boards," Advan. Powder. Tech., 17, 113(2006). https://doi.org/10.1163/156855206775123467
  10. Dang, W., Kubouchi, M., Sembokuyu, H. and Tsuda, K., "Chemical Recycling of Glass Fiber Rein Forced Epoxy Resin Cured with Amine Using Nitric Acid," Polymer., 46, 1905(2005). https://doi.org/10.1016/j.polymer.2004.12.035
  11. Park, Y. J. and Fray, D. J., "Recovery of High Purity Precious Metals from Printed Circuit Boards," J. Hazard. Mater., 164, 1152(2009). https://doi.org/10.1016/j.jhazmat.2008.09.043
  12. Goto, M., Sasaki, M. and Hirose, T., "Reaction of Polymers in Supercritical Fluids for Chemical Recycling of Waste Plastics," J. Mater. Sci., 41, 1509(2006). https://doi.org/10.1007/s10853-006-4615-2
  13. Braun, D., Gentzkow, W. and Rudolf, A. P., "Hydrogenolytic Degradation of Thermosets," Polym. Degrad. Stabil., 74, 25(2001). https://doi.org/10.1016/S0141-3910(01)00035-0
  14. Cunliffe, A. M., Jones, N. and Williams, P. T., "Pyrolysis of Composites Plastic Waste," Environ. Technol., 24, 653(2003). https://doi.org/10.1080/09593330309385599
  15. Giulvezan, G. and Carberry, W., "Composites Recycling and Disposal-an Environmental R&D Issue," Boeing Environ Technotes, 8, 1(2003).
  16. Hwang, T. S., Choi, D. M., Choi, J. R., Lim, J. H. and Park, J. K., "Effect of Coupling Agent (3-metylacryloxyvinyl silane) on the Mechanical Properties of Waste FRP/unsaturated Polyester Composites," Korean J. Mater. Research., 8, 13(1998).
  17. Lee, S. H., Choi, H. O., Kim, J. S., Lee, C. K., Kim, Y. K. and Ju, C. S., "Circulating Flow Reactor for Recycling Carbon Fiber from Fiber Reinforced Epoxy Composites," Korean J. Chem. Eng., 28, 449(2011). https://doi.org/10.1007/s11814-010-0394-1
  18. Lee, J. K., Kim, S. Y. and Ju, C. S., "Improvement of Tensile Strength of Polyester Resin Using Silica/Chopped Glass Fiber Modified by Coupling Agent," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 30(2012). https://doi.org/10.9713/kcer.2012.50.1.030
  19. Feith, S., Boiocchi, E., Mathys, G., Mathys, Z., Gibson, A. G. and Mouriz, A. P., "Mechanical Properties of Thermally-treated and Recycled Glass Fibers," Composites: Part B, 42, 350(2011). https://doi.org/10.1016/j.compositesb.2010.12.020