DOI QR코드

DOI QR Code

Coagulation and Flotation Conditions of Humic Acid by Dissolved Air Flotation

  • Lee, Chang-Han (Department of Environmental Administration, Catholic University of Pusan)
  • Received : 2012.06.26
  • Accepted : 2012.08.13
  • Published : 2012.09.30

Abstract

Coagulation, flocculation, and dissolved air flotation (DAF) experiments were performed with humic acid to evaluate the influence of operational conditions on removal efficiencies. We investigated coagulation, flocculation, and flotation conditions of humic acid removal using a laboratory-scale DAF system. This paper deals with coagulant type (aluminum sulfate and PSO-M) and the most relevant operational conditions (velocity gradients for coagulation and flocculation, retention time and recycle ratio and flotation time). Results showed that optimal conditions for removing humic acid, yielding CHA removal efficiencies of approximately 85 %, are a recycle ratio of 40 %, coagulant dosages of 0.15 - 0.20 gAl/gHA as aluminum sulfate and 0.03 - 0.12 gAl/gHA as PSO-M, coagulation($400s^{-1}$ and 60s), flocculation($60s^{-1}$ and 900s or more), and flotation(490 kPa or more and at least 10 min).

Keywords

References

  1. Arbiter, N., Harris, C. C., Fuestenau, D. W., 1961, Flotation Kinetics in Froth Flotation 50th Anniversary, SME-AIME, 215-246
  2. Amirtharajah, A., Mills, P., 1982, Rapid mix design for mechanism of alum coagulation, J. AWWA, 74(4), 210-216. https://doi.org/10.1002/j.1551-8833.1982.tb04890.x
  3. Bian, R., Watanabe, Y., Tambo, N., Ozawa, G., 1999, Removal of humic substances by UF and NF membrane systems. Wat. Sci. Tech., 40(9), 121-129. https://doi.org/10.1016/S0273-1223(99)00648-4
  4. Bourgeois, J. C., Walsh, M. E., Gagnon, G. A., 2004, Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios, Wat. Res., 38(5), 1173-1182. https://doi.org/10.1016/j.watres.2003.11.018
  5. Burns, S. E., Yiacoumi, S., Tsouris, S., 1997, Microbubble generation for environmental and industrial separations, Sep. Purif. Tech., 11(3), 221-232. https://doi.org/10.1016/S1383-5866(97)00024-5
  6. Colomer, J., Peters, F., Marrase, C., 2005, Experimental analysis of coagulation of particles under low-shear flow, Wat. Res., 39(13), 2994-3000. https://doi.org/10.1016/j.watres.2005.04.076
  7. Duan, J., Wang, J., Graham, N., Wilson, F., 2002, Coagulation of humic acid by aluminium sulphate in saline water conditions, Desalination, 150(1), 1-14. https://doi.org/10.1016/S0011-9164(02)00925-6
  8. Edzwald, J. K., 1995, Principles and applications of dissolved air flotation. Wat. Sci. Tech., 31(3-4), 1-23. https://doi.org/10.1016/0273-1223(95)00200-7
  9. Gallard, H., Gunten, U., 2002, Chlorination of natural organic matter: kinetics of chlorination and of THM formation, Wat. Res., 36(1), 65-74. https://doi.org/10.1016/S0043-1354(01)00187-7
  10. Gao, B. Y., Chu, Y. B., Yue, Q. Y., Wang, B. J., Wang, S. G., 2005, Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content, J. of Env. Mana., 76(2), 143-147. https://doi.org/10.1016/j.jenvman.2004.12.006
  11. Ge, F., Shu, H., Dai, Y., 2007, Removal of bromide by aluminium chloride coagulant in the presence of humic acid, J. of Hazar. Mat., 147(1-2), 457-462. https://doi.org/10.1016/j.jhazmat.2007.01.028
  12. Gibbons, J., Laha, S., 1999, Water purification systems: a comparative analysis based on the occurrence of disinfection by-products, Env. Pol., 106(3), 425-428. https://doi.org/10.1016/S0269-7491(99)00097-4
  13. Guay, C., Rodriguez, M., Serodes, J., 2005, Using ozonation and chloramination to reduce the formation of trihalomethanes and haloacetic acids in drinking water. Desalination, 176(1-3), 229-240. https://doi.org/10.1016/j.desal.2004.10.015
  14. Jansen, S., Paciolla, M., Ghabbour, E., Davies, G., Varnum J. M., 1996, The role of metal complexation in the solubility and stability of humic acid, Mat. Sci. Eng., 4(3), 181-187. https://doi.org/10.1016/S0928-4931(96)00150-6
  15. Jung, A. V., Chanudet, V., Ghanbaja, J., Lartiges, B. S., Bersillon, J. L., 2005, Coagulation of humic substances and dissolved organic matter with a ferric salt: An electron energy loss spectroscopy investigation, Wat. Res., 39(16), 3849-3862. https://doi.org/10.1016/j.watres.2005.07.008
  16. Kam, S. K., Gregory, J., 2001, The interaction of humic substances with cationic polyelectrolytes, Wat. Res., 35(15), 3557-3566. https://doi.org/10.1016/S0043-1354(01)00092-6
  17. Klute, R., Langer, S., Pfeifer, R., 1995, Optimization of coagulation processes prior to DAF, Wat. Sci. Tech., 31(3-4), 59-62. https://doi.org/10.1016/0273-1223(95)00206-3
  18. Matilainen, A., Lindqvist, N., Korhonen, S., Tuhkanen, T., 2002, Removal of NOM in the different stages of the water treatment process, Env. Inter., 28(6), 457-465. https://doi.org/10.1016/S0160-4120(02)00071-5
  19. Matilainen, A., Vieno, N., Tuhkanen, T., 2006, Efficiency of the activated carbon filtration in the natural organic matter removal, Env. Inter., 32(3), 324-331. https://doi.org/10.1016/j.envint.2005.06.003
  20. Mavros, P., Matis, K. A., 1991, Innovations in Flotation Technology, Kluwer Academic Publishers, Dordrecht.
  21. Mhaisalkar, V. A., Paramasivam, R., Bhole, A. G., 1991, Optimizing physical parameters of rapid mix design for coagulation-flocculation of turbid waters, Wat. Res., 25(1), 43-52. https://doi.org/10.1016/0043-1354(91)90097-A
  22. Muyibi, S. A., Evison, L. M., 1995, Optimizing physical parameters affecting coagulation of turbid water with Morninga oleifera seeds, Wat. Res., 29(12), 2689-2695. https://doi.org/10.1016/0043-1354(95)00133-6
  23. O'Melia, C. R., Becker, W. C., Au, K. K., 1999, Removal of humic substances by coagulation, Wat. Sci. Tech., 40(9), 47-54. https://doi.org/10.1016/S0273-1223(99)00639-3
  24. Owen, D. M., Amy, G. L., Chowdhury, Z. K., Rajendra, P., Mccoy, G., Viscosil, K., 1995, NOM Characterization and Treatability, J. AWWA, 87(1), 46-63.
  25. Rijk, S. E., Jaap G., Blanken, J. G., 1994, Bubble size in flotation thickening, Wat. Res., 28(2), 465-473. https://doi.org/10.1016/0043-1354(94)90284-4
  26. Rossini, M., Garrido, J. G., Galluzzo, M., 1999, Optimization of the coagulation-flocculation treatment: influence of rapid mix parameters, Wat. Res., 33(8), 1817-1826. https://doi.org/10.1016/S0043-1354(98)00367-4
  27. Teixeira, M. R., Rosa, M. J., 2007, Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: Part II. The effect of water background organics, Sepa. Purif. Tech., 53(1), 126-134. https://doi.org/10.1016/j.seppur.2006.07.001
  28. Vlaski, A., Breemen, A. N., Alaerts, G. J., 1997, The role of particle size and density in dissolved air flotation and sedimentation, Wat. Sci. Tech., 36(4), 177-189. https://doi.org/10.1016/S0273-1223(97)00438-1
  29. Yoon, J., Choi, Y., Cho, S., Lee, D., 2003, Low trihalomethane formation in Korean drinking water, Sci. Total Env., 302(1-3), 157-166. https://doi.org/10.1016/S0048-9697(01)01097-X
  30. Zouboulis, A. I., Jun, W., Katsoyiannis, I. A., 2003, Removal of humic acids by flotation, Col. and Surf. A: Physico. Eng. Aspects, 231(1-3), 181-193. https://doi.org/10.1016/j.colsurfa.2003.09.004
  31. Zouboulis, A. I., Xiao, F., Katsoyiannis, I. A., 2004, The application of bioflocculant for the removal of humic acids from stabilized landfill leachates, J. of Env. Mana., 70(1), 35-41. https://doi.org/10.1016/j.jenvman.2003.10.003