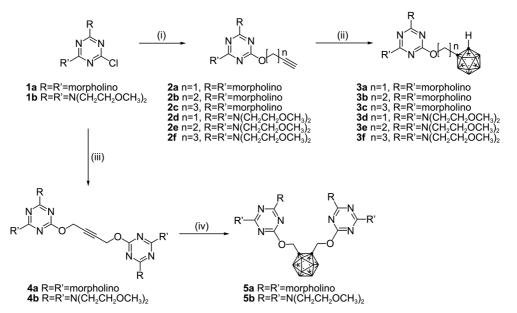
New Types of *o*-Carboranyl Heterocyclic Compounds: Synthesis and Characterization of Morpholino and Di(methoxyethyl)amino Substituted 1,3,5-Triazine Derivatives

Jong-Dae Lee, Suk Joon Cho,[†] Sun Hee Kim,[†] Gyu Yoon Chai,[†] and Chai-Ho Lee^{†,*}

Department of Chemistry, College of Natural Science, Chosun University, Dong-gu, Gwangju 501-759, Korea [†]Department of Bionano Chemistry and Institute of Basic Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea ^{*}E-mail: chaiho@wonkwang.ac.kr Received May 14, 2012, Accepted June 26, 2012

Key Words : Boron neutron capture therapy, Carborane, Triazine, Cancer treatment


The class of *s*-triazine derivatives contains compounds possessing various types of biological activity. It has been suggested that one of these compounds, hexamethylmelamine, be used for the treatment of lung carcinoma.¹ Another 1,3,5-triazine derivative (5-azacytidine) is used for the treatment of acute lymphoblastic leukemia.^{2,3} The antitumor activity of some 1,3,5-triazine derivatives is believed to be related to the fact that these compounds represent antimetabolites of pyrimidine bases and are capable of accumulating in tumor cells.⁴

Currently, the delivery of boron-containing molecular fragments to tumor tissues and the accumulation of these agents within the framework of boron neutron capture therapy (BNCT) is the subject of a great deal of attention.⁵ BNCT was first proposed as a potential cancer therapy in 1936,⁶ but successful application of BNCT to the treatment of cancer still presents a challenge in medical research.⁷ Additionally, most compounds that have developed for BNCT to date are not suitable due to their low water solubility, stability, and selectivity toward cancer cells.⁸ We believe that *s*-triazines comprise a promising group of heterocyclic

carriers of such boron-containing molecular fragments for multivariate chemical modification. For example, *o*-carborane-containing derivatives can be synthesized using propargyl substituted *s*-triazines. We previously reported that tetrahydroisoquinolines (THIQ),⁹ *s*-triazines,¹⁰ ethylamines,¹¹ and piperidines¹² containing the *o*-carborane moiety were potential BNCT agents. Here, we report the synthesis and characterization of *s*-triazinyl morpholine and di(methoxyethyl)amine derivatives and their related *o*-carborane moieties with good yields as potential BNCT agents as an extension of our ongoing investigations into the biological behavior of bio-molecules based on *o*-carboranes.

New *o*-carborane-based *s*-triazine derivatives (75-78% for **2** and 36-38% for **4**) were synthesized as outlined in Scheme 1. As shown in Scheme 1, the starting materials **1** and alkynyloxy-*s*-triazine **2** and **4** can be easily prepared as previously described.^{10,13}

Compound **2** exhibit characteristic absorption bands in the infrared spectra at $3025-3090 \text{ cm}^{-1}$ reflecting the C-H bond of the alkynyl group (see Experimental Section). The ¹H NMR spectra of compounds **2** and **4** contain a broadened

Scheme 1. *Reagent and condition*: (i) alkynyl alcohol, *t*-BuOK, DMF, 70-75 °C, 5 h; (ii) decaborane ($B_{10}H_{14}$), aniline, toluene, reflux, 24 h; (iii) alkynyl alcohol, *t*-BuOK, DMF, 70-75 °C 24 h; (iv) decaborane, aniline, toluene, reflux, 36 h.

Notes

singlet due to CH groups of the propargyl fragment at 1.97-2.42 ppm, singlets reflecting OCH₂ groups at 4.35-4.89 (2) and 4.86 and 4.91 ppm (4), and multiplets due to protons of the morpholine substituent in the region of 1.94-2.43 (2) and 4.86 and 2.43 ppm (4). Treatment of 2 or 4 with decaborane $(B_{10}H_{14})$ and dimethylaniline in toluene produced the target compounds, 3 and 5, respectively, in moderate yields (35-50%). Compounds 3 and 5 show characteristic absorption bands in the infrared spectra at 2586-2596 cm^{-1} for the B-H group (see Experimental Section). In the ¹H NMR spectra of compound 3, the proton chemical shift for the OCH_2 group $(\delta = 4.21-4.86 \text{ ppm})$ almost coincides with the value observed for the initial compound (2) (see Experimental Section). Additionally, the signal produced by protons of the CH group of this carborane was observed in a weaker field $(\delta = 3.58-4.26 \text{ ppm})$ than the value for the corresponding fragment in the initial compound ($\delta = 3.55$ ppm). In addition to the signals of protons of the morpholine substituent [δ = 3.65-3.77 (3), 3.68 and 3.74 ppm (5)], the spectra of compounds 3 and 5 contained a broad signal caused by B-H peaks of the *o*-carborane moieties from 0.5 to 3.4 ppm.

In conclusion, the sequential replacement of three chlorine atoms on cyanuric chloride with cyclic or secondary amine nucleophiles provides the synthesis of a variety of alkynyloxo-substituted *s*-triazine molecules Thus, we have developed a general and versatile method for the preparation of triazines flanked with an *o*-carborane. In light of its operational simplicity and efficiency, this reliable method is expected to have a broad utility due to the scope of applications of the *s*-triazines.

Experimental Section

General Consideration. All manipulations were carried out using standard Schlenk techniques. Starting materials, **1**, **2a**, and **3a**, were prepared as previously described.¹⁰ NMR spectra were collected using a JEOL (500 MHz) FT-NMR spectrometer and referenced based on the residual protons of the solvent (CDCl₃, 7.26 ppm). Infrared (IR) spectra were obtained on a JASCO FT/IR-5300 spectrophotometer. Lowresolution mass spectra were acquired with a Quattro AC spectrometer.

Preparation of Compounds 2 and 4.

General Procedure: A DMF (50 mL) solution of 2,4dimorpholino- or bis[di(methoxyethylamino)]-1,3,5-triazine **1** (10 mmol) and alkynyl alcohol (15 mmol for **2**) or 2butyn-1,4-diol (8 mmol for **4**) was added to potassium *tert*butoxide (1.2 mmol for **2** or 8.0 mmol for **4**) at room temperature. The reaction mixture was then stirred at room temperature for 1 h, followed by stirring at 70 °C for an additional 6 h. Next, the reaction mixture was cooled to room temperature and quenched with distilled H₂O (50 mL × 3). The reaction mixture was subsequently extracted with ethyl acetate (30 mL × 2). The organic layer was washed with H₂O (30 mL × 3), dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography (ethyl acetate:*n*-hexane = 1:1) to give 2 and 4 in yields of 75-78% and 36-38%, respectively. 2a: Yield: 2.37 g (78%); IR (KBr pellet, cm^{-1}) v(C–H)

3290; ¹H NMR (CDCl₃, ppm) δ 2.42 (t, *J* = 5.0 Hz, 1H), 3.70 (t, *J* = 10.0 Hz, 8H), 3.78 (t, *J* = 10.0 Hz, 8H), 4.89 (d, *J* = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 43.9, 54.1, 66.8, 74.5, 78.6, 166.03, 170.0.

2b: Yield: 2.45 g (77%); LRMS: 319 (36%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(C–H) 3276; ¹H NMR (CDCl₃, ppm) δ 2.00 (t, J = 5.0 Hz, 1H), 2.67 (td, J = 15.0 and 6 Hz, 2H), 3.69 (t, J = 10.0 Hz, 8H), 3.78 (t, J = 10.0 Hz, 8H), 4.38 (t, J = 15.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 19.2, 43.9, 64.3, 66.8, 70.0, 79.2, 166.1, 170.5.

2c: Yield: 2.54 g (75%); LRMS: 333 (28%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(C–H) 3285; ¹H NMR (CDCl₃, ppm) δ 1.94 (m, 2H), 1.94 (t, J = 5.0 Hz, 1H), 1.97 (q, J = 15.0 Hz, 2H), 2.35 (td, J = 15.0 Hz and 5.0 Hz, 2H), 3.70 (t, J = 10.0 Hz, 8H), 3.78 (t, J = 10.0 Hz, 8H), 4.35 (t, J = 15.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 15.4, 28.0, 43.8, 65.2, 66.9, 474768.8, 83.7, 166.1, 170.9.

2d: Yield: 3.05 g (77%); LRMS: 397 (26%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(C–H) 3283; ¹H NMR (CDCl₃, ppm) δ 2.43 (t, J = 3.0 Hz, 1H), 3.31 (s, 12H), 3.55 (t, J = 11.0 Hz, 8H), 3.74 (t, J = 11.0 Hz, 8H), 4.85 (d, J = 3.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 47.6, 47.9, 53.8, 58.9, 70.6, 71.2, 74.2, 79.1, 166.0, 169.5.

2e: Yield: 3.12 g (76%); LRMS: 411 (31%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(C–H) 3225; ¹H NMR (CDCl₃, ppm) δ 1.98 (t, J = 5.0 Hz, 1H), 2.65 (td, J = 15.0 Hz and 5.0 Hz, 2H), 3.32 (s, 12H), 3.55 (t, J = 10.0 Hz, 8H), 3.76 (t, J = 10.0 Hz, 8H), 4.36 (t, J = 15.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 19.2, 47.7, 47.8, 58.8, 64.1, 69.9, 70.7, 71.3, 80.4, 166.1, 170.0.

2f: Yield: 3.18 g (75%); LRMS: 425 (28%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(C–H) 3280; ¹H NMR (CDCl₃, ppm) δ 1.96 (q, *J* = 15.0 Hz, 2H), 2.16 (t, *J* = 5.0 Hz, 1H), 2.33 (td, *J* = 15.0 Hz and 5 Hz, 2H), 3.33 (s, 12H), 3.55 (t, *J* = 10.0 Hz, 8H), 3.76 (t, *J* = 10.0 Hz, 8H), 4.35 (t, *J* = 15.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 15.4, 28.1, 65.0, 68.7, 70.8, 71.3, 75.2, 83.8, 166.1, 170.5.

4a: Yield: 2.22 g (38%); LRMS: 584 (37%), $[M]^{++}$; ¹H NMR (CDCl₃, ppm) δ 3.70 (t, J = 15.0 Hz, 16H), 3.78 (t, J = 15.0 Hz, 16H), 4.91 (s, 4H); ¹³C NMR (CDCl₃, ppm) δ 43.9, 66.9, 77.6, 80.5, 166.0, 170.2.

4b: Yield: 2.26 g (36%); LRMS: 768 (27%), $[M]^{++}$; ¹H NMR (CDCl₃, ppm) δ 3.30 (s, 24H), 3.52 (t, J = 15.0 Hz, 16H), 3.71 (t, J = 15.0 Hz, 16H), 4.86 (s, 4H); ¹³C NMR (CDCl₃, ppm) δ 54.1, 58.9, 58.9, 71.3, 81.4, 166.0, 170.0.

Preparation of 3 and 5.

General Procedure: Decaborane (0.88 g, 11 mmol) and *N*,*N*-dimethylaniline (1.75 g, 14 mmol) were added to a dried toluene (20 mL) solution containing alkynyloxy-1,3,5-triazines **2** or **4** (2.0 g, 10 mmol). The resulting solution was then heated at reflux for 24 h and filtered. Next, the filtrate was diluted with water (1:1), after which the precipitate was separated by filtration and recrystallized to give **3** or **5**.

3a: Yield: 2.11 g (50%); IR (KBr pellet, cm⁻¹) v(B–H) 2588; ¹H NMR (CDCl₃, ppm) δ 3.65 (t, J = 10.0 Hz, 8H),

3.70 (t, *J* = 10.0 Hz, 8H), 3.97 (br s, 1H), 4.86 (s, 2H); ¹³C NMR (CDCl₃, ppm) δ 43.9, 58.1, 66.2, 66.7, 72.3, 165.8, 170.5.

3b: Yield: 2.14 g, (49%); LRMS: 438[†] (100%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(B–H) 2596; ¹H NMR (CDCl₃, ppm) δ 2.67 (t, J = 12.0 Hz, 2H), 3.70 (t, J = 10.0 Hz, 8H), 3.77 (t, J = 10.0 Hz, 8H), 3.84 (br s, 1H), 4.34 (t, J = 12.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 36.6, 43.9, 60.7, 66.8, 67.0, 72.4, 165.9, 170.1.

3c: Yield 2.20 g, (49%); LRMS: 451^{\dagger} (100%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(B–H) 2591; ¹H NMR (CDCl₃, ppm) δ 1.93 (q, J = 12.0 Hz, 2H), 2.39 (t, J = 12.0 Hz, 2H), 3.58 (br s, 1H), 3.70 (t, J = 12.0 Hz, 8H), 3.76 (t, J = 12.0 Hz, 8H), 4.24 (t, J = 12.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 28.7, 305.2, 44.9, 61.6, 65.2, 66.8, 74.7, 166.0, 170.1.

3d: Yield: 2.42g (47%); LRMS: 515[†] (100%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(B–H) 2592; ¹H NMR (CDCl₃, ppm) δ 3.33 (s, 12H), 3.55 (t, *J* = 12.0 Hz, 8H), 4.26 (br s, 1H), 3.75 (t, *J* = 12.0 Hz, 8H), 4.82 (s, 2H); ¹³C NMR (CDCl₃, ppm) δ 47.9, 58.6, 66.1, 70.6, 71.0, 73.2, 166.0, 169.5.

3e: Yield: 2.48 g (47%); LRMS: 530[†] (100%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(B–H) 2588; ¹H NMR (CDCl₃, ppm) δ 2.70 (t, J = 12.0 Hz, 2H), 3.32 (s, 12H), 3.55 (t, J = 10.0 Hz, 8H), 3.76 (t, J = 10.0 Hz, 8H), 3.79 (br s, 1H), 4.35 (t, J = 12.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 36.4, 47.8, 60.8, 63.8, 70.7, 71.1, 72.5, 166.0, 169.6.

3f: Yield: 2.60 g (48%); LRMS: 544[†] (100%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(B–H) 2594; ¹H NMR (CDCl₃, ppm) δ 1.92 (q, J = 12.0 Hz, 2H), 2.36 (t, J = 12.0 Hz, 2H), 3.35 (s, 12H), 3.53 (t, J = 10.0 Hz, 8H), 3.73 (br s, 1H), 3.75 (t, J = 10.0 Hz 8H), 4.21 (t, J = 12.0 Hz, 2H); ¹³C NMR (CDCl₃, ppm) δ 28.8, 35.2, 58.9, 61.6, 64.9, 70.7, 71.2, 74.9, 166.0, 170.2.

5a: Yield: 2.44 g (35%); LRMS: 702^{\dagger} (100%), $[M]^{+\dagger}$; IR (KBr pellet, cm⁻¹) v(B–H) 2586; ¹H NMR (CDCl₃, ppm) δ 3.68 (t, J = 15.0 Hz, 16H), 3.74 (t, J = 15 Hz, 8H) 5.00 (s, 4H); ¹³C NMR (CDCl₃, ppm) δ 43.9, 64.7, 66.8, 72.6, 165.9, 169.7.

5b: Yield: 3.62 g (41%); LRMS: 888[†] (100%), $[M]^{++}$; IR (KBr pellet, cm⁻¹) v(B–H) 2593; ¹H NMR (CDCl₃, ppm) δ 3.31 (s, 24H), 3.55 (t, *J* = 12.0 Hz, 16H), 3.75 (t, *J* = 12.0 Hz, 16H), 5.05 (s, 4H); ¹³C NMR (CDCl₃, ppm) δ 47.2, 59.0, 64.2, 70.6, 71.2, 75.6, 166.0, 169.3.

[†]These masses correspond to the maximum intensity peak of a fragment showing the expected isotope distribution pattern for 10 boron atoms with natural abundance of boron-10 and boron-11.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (grant number 2010-0024724).

References

- 1. Takita, H.; Didolkar, M. S. Cancer Chemother. Rep. 1974, 58, 371.
- 2. Vesely, J.; Sorm, F. Neoplasma (Bratisl) 1965, 12, 3.
- Tan, C.; Burchenal, J.; Clarkson, B. Proc. Am. Assoc. Cancer Res. 1973, 14, 97.
- 4. Borkovec, A. A.; Demilo, A. B. J. Med. Chem. 1967, 10, 457.
- (a) Hawthorne, M. F. *Contemporary Boron Chemistry*; Davidson M., Hughes, A. K., Eds.; The Royal Society of Chemistry: UK, 2000; p 197. (b) Soloway, A. H.; Zhuo, J.-C.; Rong, F.-H.; Lunanto, A. L.; Ives, D. H.; Barth, R. F.; Anisuzzaman, A. K. M.; Barth, C. D.; Barnum, B. A. *J. Organometal. Chem.* **1999**, *581*, 150.
- 6. Locher, G. L. Am. J. Roentgenol. Radium Ther. 1936, 36, 1.
- Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F. G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. *Chem. Rev.* **1998**, *98*, 1515.
- (a) Hawthorne, M. F. Angew. Chem., Int. Ed. Engl. 1993, 32, 950.
 (b) Morin, C. Tetrahedron 1994, 50, 12521.
 (c) Yamamoto, Y. Pure. Appl. Chem. 1991, 63, 423.
 (d) Barth, R. F.; Soloway, A. H.; Fairchild, R. G. Cancer Res. 1990, 50, 1061.
 (d) Yanagie, H.; Maruyama, K.; Takizawa, T.; Ishida, O.; Ogura, K.; Matsumoto, T.; Sakurai, Y.; Kobayashi, T.; Shinohara, A.; Rant, J. Biomedecine & Pharmacotherapy 2006, 60, 43.
- 9. Lee, J.-D.; Lee, C.-H.; Nakamura, H.; Ko, J.; Kang, S. O. *Tetrahedron Lett.* **2002**, *43*, 5483.
- (a) Lee, C.-H.; Lim, H.-G.; Lee, J.-D.; Lee, Y.-J.; Ko, J.; Nakamura, H.; Kang, S. O. *Appl. Organometal. Chem.* **2003**, *17*, 539. (b) Azev, Y. A.; Dülcks, T.; Gabel, D. *Tetrahedron Lett.* **2003**, *44*, 8689.
- Lee, J.-D.; Lee, Y. J.; Jeong, H. Y.; Lee, J. S.; Lee, C.-H.; Ko, J.; Kang, S. O. Organometallics 2003, 22, 445.
- Lee, C.-H.; Yang, I. D.; Lee, J.-D.; Nakamura, H.; Ko, J.; Kang, S. O. Synlett 2004, 10, 1799.
- (a) Azev, Y.; Slepukhina, I.; Gabel, D. *Appl. Rad. Isotopes* 2004, 61, 1107. (b) Azev, Y. A.; Gabel, D.; Dulks, T.; Shorshnev, S. V.; Klyuev, N. A. *Pharm. Chem. J.* 2004, 38, 197. (c) Sarıpınar, E.; Geçen, N.; Şahin, K.; Yanmaz, E. *Eur. J. Med. Chem.* 2010, 45, 4157. (d) Zheng, M.; Xu, C.; Ma, J.; Sun, Y.; Du, F.; Liu, H.; Lin, L.; Li, C.; Ding, J.; Chen, K.; Jiang, H. *Bioorg. Med. Chem.* 2007, 15, 1815.