DOI QR코드

DOI QR Code

Europium-Enoxacin Complex as Fluorescence Probe for the Determination of Folic Acid in Pharmaceutical and Biological Samples

  • Alam, Al-Mahmnur (Department of Chemistry, Kyungpook National University) ;
  • Kamruzzaman, Mohammad (Department of Chemistry, Kyungpook National University) ;
  • Lee, Sang-Hak (Department of Chemistry, Kyungpook National University) ;
  • Kim, Young-Ho (Research Institute of Advanced Energy Technology, Kyungpook National University) ;
  • Min, Kyung (Department of Chemistry, Kyungpook National University)
  • Received : 2012.02.29
  • Accepted : 2012.06.26
  • Published : 2012.09.20

Abstract

A simple, rapid and sensitive spectrofluorometric method was developed for the determination of folic acid (FA), based on its quenching effect on the fluorescence intensity of enoxacin (ENX)-europium ($Eu^{3+}$) complex as a fluorescent probe. Fluorometric interaction between ENX-$Eu^{3+}$ complex and FA was studied using UV-visible and fluorescence spectroscopy. The quenched fluorescence intensity at an emission wavelength of 614 nm was proportional to the concentration of FA. Optimum conditions for the determination of FA were investigated. Under optimal conditions, the reduced fluorescence intensity at 614 nm was responded linearly with the concentration of FA. The linearity was maintained in the range of $1.25{\times}10^{-9}$ to $1.50{\times}10^{-7}$ M (R = 0.9986) with the limit of detection ($3S_b/m$) (where $S_b$ is the standard deviation of blank and m is the slop of linear calibration curve) of $6.94{\times}10^{-10}$ M. The relative standard deviation (RSD) for 9 repeated measurements of $1.0{\times}10^{-9}$ M FA was 1.42%. This method was simple, cost effective, and relatively free of interference from coexisting substances. Successful determinations of FA in pharmaceutical formulation and biological samples with the developed method were demonstrated.

Keywords

References

  1. Arcot, J.; Shrestha, A. Trends Food Sci. Technol. 2005, 16, 253. https://doi.org/10.1016/j.tifs.2005.03.013
  2. Shulin, Z.; Hongyan, Y.; Chao, X.; Dan, X. J. Chromatogr. A 2006, 1107, 290. https://doi.org/10.1016/j.chroma.2005.11.052
  3. Bryant, C. N.; Katherine, E. S.; Lane, C. S. J. Chromatogr. A 2006, 1135, 203. https://doi.org/10.1016/j.chroma.2006.09.040
  4. Breithaupt, D. E. Food Chem. 2001, 74, 521. https://doi.org/10.1016/S0308-8146(01)00219-9
  5. Leporati, A.; Catellani, D.; Suman,; Andreoli, M. R.; Manini, P.; Niessen, W. M. A. Anal. Chim. Acta 2005, 531, 87. https://doi.org/10.1016/j.aca.2004.10.006
  6. Kok, R. M.; Smith, D. E. C.; Dainty, J. R.; Van den Akker, J. T.; Finglas, P. M.; Smulders, Y. M.; Jakobs, C.; de Meer, K. Ana. Biochem. 2004, 326, 129. https://doi.org/10.1016/j.ab.2003.12.003
  7. Ruggeri, S.; Vahteristo, L. T.; Aguzzi,; Finglas, A. P.; Carnovale, W. J. Chromatogr. A 1999, 855, 237. https://doi.org/10.1016/S0021-9673(99)00674-3
  8. Alaburda, J.; Almeida, A. P.; Shundo, L.; Ruvieri, V.; Sabino, M. J. Food Comp. Anal. 2008, 21, 336. https://doi.org/10.1016/j.jfca.2007.12.002
  9. Akhtar, M. J.; Khan, M. A.; Ahmad, I. J. Pharm. Biomed. Anal. 1997, 16, 95. https://doi.org/10.1016/S0731-7085(96)02028-6
  10. Zhang, B. T.; Zhao, L.; Lin, J. M. Talanta 2008, 74, 1154. https://doi.org/10.1016/j.talanta.2007.08.027
  11. Nie, F.; He, Y.; Lu, J. Microchem. J. 2000, 65, 319. https://doi.org/10.1016/S0026-265X(00)00127-2
  12. Song, Z.; Zhou, X. Spectrochim. Acta Part A 2001, 57, 2567. https://doi.org/10.1016/S1386-1425(01)00441-3
  13. Nagaraja, P.; Vasantha, R. A.; Yathirajan, H. S. Anal. Biochem. 2002, 307, 316. https://doi.org/10.1016/S0003-2697(02)00038-6
  14. Buhl, F.; Hachula, U. Chem. Anal. 1991, 36, 27.
  15. Vaze, V. D.; Srivastava, A. K. Electrochim. Acta 2007, 53, 1713. https://doi.org/10.1016/j.electacta.2007.08.017
  16. LeGall, A. C.; Vandenberg, C. M. B. Anal. Chim. Acta 1993, 282, 459. https://doi.org/10.1016/0003-2670(93)80109-X
  17. Wang, C.; Li, C.; Li, T.; Xu, X.; Wang, C. Microchim. Acta 2006, 52, 233.
  18. Zhang, Z. Q.; Tang, Y. Anal. Bioanal. Chem. 2005, 381, 932. https://doi.org/10.1007/s00216-004-2961-y
  19. Lapa, R. A. S.; Lima, J. L. F. C.; Reis, B. F.; Santos, J. L. M.; Zagatoo, E. A. G. Anal. Chim. Acta 1997, 351, 223. https://doi.org/10.1016/S0003-2670(97)00335-8
  20. Manzoori, J. L.; Jouyban, A.; Amjadia, M.; Soleymania, J. Luminescence 2011, 26, 106. https://doi.org/10.1002/bio.1191
  21. Yu, F.; Cui, M.; Chen, F.; Gao, Y.; Wei, J.; Ding, Y. Anal. Lett. 2009, 42, 178. https://doi.org/10.1080/00032710802568663
  22. Klink, S. I.; Hebbink, G. A.; Grave, L.; Alink, P. G. B.; Veggel, F. C. J. M. J. Phys. Chem. A 2002, 106, 3681. https://doi.org/10.1021/jp012617o
  23. Nakagawa, T.; Atsumi, K.; Nakashima, T.; Hasegawa, T.; Kawai, T. Chem. Lett. 2007, 36, 372. https://doi.org/10.1246/cl.2007.372
  24. Nakamura, K.; Hasegawa, Y.; Wada, Y.; Yanagida, S. Chem. Phys. Lett. 2004, 398, 500. https://doi.org/10.1016/j.cplett.2004.09.089
  25. Veiopoulou, C. J.; Ioannou, P. C. J. Pharm. Biomed. Anal. 1997, 15, 1839. https://doi.org/10.1016/S0731-7085(96)02041-9
  26. Panadero, S.; Gómez-Hens, A.; Pérez, D. Anal. Chim. Acta 1995, 303, 39. https://doi.org/10.1016/0003-2670(94)00487-7
  27. Wang, L.; Guo, C.; Fu, B.; Wang, L. J. Agri. Food. Chem. 2011, 59, 1607. https://doi.org/10.1021/jf104484v
  28. Kamruzzaman, M.; Alam, A.-M.; Lee, S. H.; Ragupathy, D.; Kim, Y. H.; Park, S.-R.; Kim, S. H. Spectrochim. Acta Part A 2010, 86, 375.
  29. Alam, A.-M.; Kamruzzaman, M.; Lee, S. H.; Kim, Y. H.; Jo, H. J.; Kim, S. H., Park, S.-R. J. Luminescence 2012, 132, 789. https://doi.org/10.1016/j.jlumin.2011.11.009
  30. Klink, S. I.; Hebbink, G. A.; Grave, L.; Alink, P. G. B.; Veggel, F. C. J. M. J. Phys. Chem. A 2002, 106, 3681. https://doi.org/10.1021/jp012617o
  31. Chen, F. F.; Bian, Z. Q.; Liu, Z. W.; Nie, D. B.; Chen, Z. Q.; Huang, C. H. Inorg. Chem. 2008, 47, 2507. https://doi.org/10.1021/ic701817n
  32. Miller, T. L.; Bennett, L. W.; Spatz, D. S. Ohio. J. Sci. 1986, 86, 140.

Cited by

  1. Polyethylenimine-Capped Silver Nanoclusters as a Fluorescence Probe for Highly Sensitive Detection of Folic Acid through a Two-Step Electron-Transfer Process vol.62, pp.28, 2014, https://doi.org/10.1021/jf4054534
  2. Electronic Structure and Energy Transfer in Europium(III)–Ciprofloxacin Complexes: A Theoretical Study vol.120, pp.38, 2016, https://doi.org/10.1021/acs.jpca.6b07258
  3. Ultrasensitive and Rapid Determination of Folic Acid Using Ag Nanoparticles Enhanced 1, 10-Phenantroline-Terbium (III) Sensitized Fluorescence vol.26, pp.5, 2016, https://doi.org/10.1007/s10895-016-1882-4
  4. (n = 2, 2, 4, 6) cores: synthesis, crystal structures and luminescence properties vol.45, pp.7, 2016, https://doi.org/10.1039/C5DT04262C
  5. Europium Luminescence Used for Logic Gate and Ions Sensing with Enoxacin As the Antenna vol.88, pp.2, 2012, https://doi.org/10.1021/acs.analchem.5b03593