DOI QR코드

DOI QR Code

Pressure Analyses at the Planar Surface of Liquid-Vapor Argon by a Test-Area Molecular Dynamics Simulation

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Received : 2012.06.08
  • Accepted : 2012.06.25
  • Published : 2012.09.20

Abstract

Pressure tensors at the planar surface of liquid-vapor argon are evaluated from the virial theorem, Irving-Kirkwood, and Harasima versions using a test-area molecular dynamics simulation method through a Lennard-Jones intermolecular potential at two temperatures. We found that the normal and transverse components of the pressure tensor, $p_N(z)$ and $p_T(z)$, obtained from the virial theorem and Harasima version are essentially the same. The normal component of the pressure tensor from Irving-Kirkwood version, $p_N^{IK}(z)$, is shown to be a nearly constant at the lower temperature, independent of z, as agreed in a previous study, but not for $p_N^H$(z), while the transverse components, $p_T^{IK}(z)$ and $p_T^H(z)$, are almost the same. The values of surface tension for both versions computed from $p_N(z)-p_T(z)$ are also the same and are fully consistent with the experimental data.

Keywords

References

  1. Rowlinson, J. S.; Widom, B. Theory of Capillarity; Oxford: Clarendon: 1982.
  2. Henderson, D. Fundamentals of Inhomogeneous Fluids; Dekker: New York, 1992.
  3. Davis, H. T. Statistical Mechanics of Phases, Interfaces, and Thin Films; VCH: Weinheim, 1996.
  4. van der Waals, J. D. Z. Phys. Chem. 1894, 13, 657.
  5. English translation, Rowlinson, J. S. J. Stat. Phys. 1979, 20, 197. https://doi.org/10.1007/BF01011513
  6. Jeans, J. H. The dynamical Theory of Gases, 4th ed.; Dover: New York, 1960.
  7. Hill, T. L. Statistical Mechanics; McGrow- Hill: New York, 1956; pp 190-191.
  8. Lee, S. H. Bull. Korean Chem. Soc. 2007, 28, 1371. https://doi.org/10.5012/bkcs.2007.28.8.1371
  9. Walton, J. P. R. B.; Tildesley, D. J.; Rowlinson, J. S.; Henderson, J. R. Mol. Phys. 1983, 48, 1357. https://doi.org/10.1080/00268978300100971
  10. Kirkwood, J. G.; Buff, F. P. J. Chem. Phys. 1949, 17, 338. https://doi.org/10.1063/1.1747248
  11. Irving, J. H.; Kirkwood, J. G. J. Chem. Phys. 1950, 18, 817. https://doi.org/10.1063/1.1747782
  12. Harasima, A. Adv. Chem. Phys. 1958, 1, 203.
  13. Ono, S.; Kondo, S. Encyclopedia of Physics; Flugge, S., Ed.; Springer: 1960; Vol. 10, p 134.
  14. Hemingway, S. J.; Henderson, J. R.; Rowlinson, J. S. Faraday Symp. Chem. Soc. 1981, 16, 33. https://doi.org/10.1039/fs9811600033
  15. Schofield, P.; Henderson, J. R. Proc. R. Soc. A 1982, 379, 231. https://doi.org/10.1098/rspa.1982.0015
  16. Rowlinson, J. S.; Widom, B. Theory of Capillarity, Part 4.3, 4.4, 4.8 and 5.7; Oxford: Clarendon: 1982.
  17. Lee, S. H. Bull. Korean Chem. Soc. 2012, 33, 167. https://doi.org/10.5012/bkcs.2012.33.1.167
  18. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press.: Oxford, 1987; p 64.
  19. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637. https://doi.org/10.1063/1.442716
  20. Nose, S. Mol. Phys. 1984, 52, 255. https://doi.org/10.1080/00268978400101201
  21. Hoover, W. G. Phys. Rev. A1985, 31, 1695. https://doi.org/10.1103/PhysRevA.31.1695
  22. Chapela, G. A.; Saville, G.; Thompson, S. M.; Rowlinson, J. S. J. Chem. Soc. Faraday Trans. II 1977, 8, 133.
  23. Rao, M.; Berne, B. J. Mol. Phys. 1979, 37, 455. https://doi.org/10.1080/00268977900100381
  24. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/ fluid (accessed 2011).

Cited by

  1. Molecular Dynamics Simulation of a Small Drop of Liquid Argon vol.33, pp.11, 2012, https://doi.org/10.5012/bkcs.2012.33.11.3805
  2. Interfacial structure of water/methanol mixture in contact with graphene surface using molecular dynamics simulation vol.2015, pp.6, 2012, https://doi.org/10.1088/1742-5468/2015/06/p06033
  3. Pressure gradients fail to predict diffusio-osmosis vol.30, pp.20, 2018, https://doi.org/10.1088/1361-648x/aabd58
  4. Improving boiling heat transfer with hydrophilic/hydrophobic patterned flat surface: A molecular dynamics study vol.182, pp.None, 2012, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121974