DOI QR코드

DOI QR Code

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won (Department of Applied Chemistry, Dongduk Women's University) ;
  • Park, Jong-Nam (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2012.04.06
  • Accepted : 2012.06.25
  • Published : 2012.09.20

Abstract

Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

Keywords

References

  1. Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Angew. Chem. Int. Ed. 2008, 47, 2930. https://doi.org/10.1002/anie.200702505
  2. Guo, Y.-G.; Hu, J.-S.; Wan, L.-J. Adv. Mater. 2008, 20, 2878. https://doi.org/10.1002/adma.200800627
  3. Brousselya, M.; Biensanb, P.; Simon, B. Electrochimica Acta 1999, 45, 22.
  4. Noh, M.; Kwon, Y.; Lee, H.; Cho, J.; Kim, Y.; Kim, M. G. Chem. Mater. 2005, 17, 1926. https://doi.org/10.1021/cm0481372
  5. Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. https://doi.org/10.1021/ja0345524
  6. Zhang, W.-M.; Hu, J.-S.; Guo, Y.-G.; Zheng, S.-F.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J. Adv. Mater. 2008, 20, 1160. https://doi.org/10.1002/adma.200701364
  7. Lou, X. W.; Li, C. M.; Archer, L. A. Adv. Mater. 2009, 21, 2536. https://doi.org/10.1002/adma.200803439
  8. Deng, D.; Lee, J. Y. Angew. Chem. Int. Ed. 2009, 48, 1660. https://doi.org/10.1002/anie.200803420
  9. Chen, G.; Wang, Z.; Xia, D. Chem. Mater. 2008, 20, 6951. https://doi.org/10.1021/cm801853c
  10. Grigoriants, I.; Sominski, L.; Li, H.; Ifargan, I.; Aurbach, D.; Gedanken, A. Chem. Commun. 2005, 921.
  11. Kasavajjula, U.; Wang, C.; Appleby, A. J. J. Power Sources 2007, 163, 1003. https://doi.org/10.1016/j.jpowsour.2006.09.084
  12. Guo, Y.-G.; Hu, Y.-S.; Sigle, W.; Maier, J. Adv. Mater. 2007, 19, 2087. https://doi.org/10.1002/adma.200602828
  13. Wang, D.-W.; Fang, H.-T.; Li, F.; Chen, Z.-G.; Zhong, Q.-S.; Lu, G. Q.; Cheng, H.-M. Adv. Funct. Mater. 2008, 18, 3787. https://doi.org/10.1002/adfm.200800635
  14. Huang, Y.; Cai, H.; Feng, D.; Gu, D.; Deng, Y.; Tu, B.; Wang, H.; Webleyb, P. A.; Zhao, D. Chem. Commun. 2008, 2641.
  15. Mochida, I.; Ku, C.-H.; Yoon, S.-H.; Korai, Y. J. Power Sources 1998, 75, 214. https://doi.org/10.1016/S0378-7753(98)00101-3
  16. Teixidor, G. T.; Zaouk, R. B.; Park, B. Y.; Madou, M. J. J. Power Sources 2008, 183, 730. https://doi.org/10.1016/j.jpowsour.2008.05.065
  17. Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S. Science 1995, 270, 590. https://doi.org/10.1126/science.270.5236.590
  18. Sato, K.; Noguchi, M.; Demachi, A.; Oki, N.; Endo, M. Science 1994, 264, 556. https://doi.org/10.1126/science.264.5158.556
  19. Bonino, F.; Brutti, S.; Reale, P.; Scrosati, B.; Gherghel, L.; Wu, J.; Muellen, K. Adv. Mater. 2005, 17, 743. https://doi.org/10.1002/adma.200401006
  20. Kavan, L. Chem. Rev. 1997, 97, 3061. https://doi.org/10.1021/cr960003n
  21. Wang, C. S.; Wu, G. T.; Zhang, X. B.; Qi, Z. F.; Li, W. Z. J. Electrochem. Soc. 1998, 145, 2751. https://doi.org/10.1149/1.1838709
  22. Lee, H. Y.; Lee, S. M. Electrochem. Commun. 2004, 6, 465. https://doi.org/10.1016/j.elecom.2004.03.005
  23. Wang, G. X.; Yao, J.; Liu, H. K. Electrochem. Solid-State Lett. 2004, 7, A250. https://doi.org/10.1149/1.1764411
  24. Li, H.; Huang, X.; Chen, L.; Wu, Z.; Liang, Y. Electrochem. Solid- State Lett. 1999, 2, 547. https://doi.org/10.1149/1.1390899
  25. Kim, I. S.; Kumta, P. N. J. Power Sources 2004, 136, 145. https://doi.org/10.1016/j.jpowsour.2004.05.016
  26. Wang, G. X.; Ahn, J. H.; Yao, J.; Bewlay, S.; Liu, H. K. Electrochem. Commun. 2004, 6, 689. https://doi.org/10.1016/j.elecom.2004.05.010
  27. Dimov, N.; Kugino, S.; Yoshio, M. J. Power Sources 2004, 136, 108. https://doi.org/10.1016/j.jpowsour.2004.05.012
  28. Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Mueller, J. O.; Schloegl, R.; Antonietti, M.; Maier, J. Angew. Chem. Int. Ed. 2008, 47, 1645. https://doi.org/10.1002/anie.200704287
  29. Ng, S. H.; Wang, J.; Wexler, D.; Konstantinov, K.; Guo, Z.-P.; Liu, H. K. Angew. Chem. Int. Ed. 2006, 45, 6896. https://doi.org/10.1002/anie.200601676
  30. Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F.-M. Chem. Commun. 2005, 1566.
  31. Chan, C. K.; Peng, H.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. Nat. Nanotechnol. 2008, 3, 31. https://doi.org/10.1038/nnano.2007.411
  32. Ma, H.; Cheng, F.; Chen, J.; Zhao, J.; Li, C.; Tao, Z.; Liang, J. Adv. Mater. 2007, 19, 4067. https://doi.org/10.1002/adma.200700621
  33. Su, F.; Zhao, X. S.; Wang, Y.; Zeng, J.; Zhou, Z.; Lee, J. Y. J. Phys. Chem. B 2005, 109, 20200. https://doi.org/10.1021/jp0541967
  34. Kim, T.; Mo, Y. H.; Nahm, K. S.; Oh, S. M. J. Power Sources 2006, 162, 1275. https://doi.org/10.1016/j.jpowsour.2006.07.062
  35. Lee, J.-H.; Kim, W.-J.; Kim, J.-Y.; Lim, S.-H.; Lee, S.-M. J. Power Sources 2008, 176, 353. https://doi.org/10.1016/j.jpowsour.2007.09.119
  36. Ng, S. H.; Wang, J.; Wexler, D.; Chew, S. Y.; Liu, H. K. J. Phys. Chem. C 2007, 111, 11131. https://doi.org/10.1021/jp072778d
  37. Peng, K.; Jie, J.; Zhang, W.; Lee, S.-T. Appl. Phys. Lett. 2008, 93, 033105. https://doi.org/10.1063/1.2929373
  38. Kang, D.-K.; Corno, J. A.; Gole, J. L.; Shin, H.-C. J. Electrochem. Soc. 2008, 155, A276. https://doi.org/10.1149/1.2836570
  39. Hasegawa, T.; Mukai, S. R.; Shirota, Y.; Tamon, H. Carbon 2004, 42, 2573. https://doi.org/10.1016/j.carbon.2004.05.050
  40. Eom, J. Y.; Park, J. W.; Kwon, H. S.; Rajendran, S. J. Electrochem. Soc. 2006, 153, A1678. https://doi.org/10.1149/1.2213528
  41. Wen, Z. S.; Yang, J.; Wang, B. F.; Wang, K.; Lui, Y. Electrochem. Commun. 2006, 8, 51. https://doi.org/10.1016/j.elecom.2005.08.024
  42. Zhang, Y.; Zhange, X. G.; Zhang, H. L.; Zhao, Z. G.; Li, F.; Liu, C.; Cheng, H. M. Electrochimica Acta 2006, 51, 4994. https://doi.org/10.1016/j.electacta.2006.01.043
  43. Wang, W.; Kumta, P. N. J. Power Sources 2007, 172, 650. https://doi.org/10.1016/j.jpowsour.2007.05.025
  44. Nazar, L. F.; Crosnier, O. In Lithium Batteries Sciences and Technology; Nazri, G.-A., Pistoria, G., Eds.; Kluwer Academic/ Plenum: Boston, 2004; p 112.
  45. Lee, J.; Bae, J.; Heo, J.; Han, I. T.; Cha, S. N.; Kim, D. K.; Yang, M.; Han, H. S.; Jeon, W. S.; Chung, J. J. Electrochem. Soc. 2009, 156, A905. https://doi.org/10.1149/1.3223963
  46. Tonanon, N.; Intarapanya, W.; Tanthapanichakoon, W.; Nishihara, H.; Mukai, S. R.; Tamon, H. J. Porous Mater. 2008, 15, 265. https://doi.org/10.1007/s10934-006-9082-2
  47. Li, X.; Su, Y.; Zhou, X.; Mo, X. Colloids Surf. B 2009, 69, 221. https://doi.org/10.1016/j.colsurfb.2008.11.031
  48. Jang, J.; Oh, J. Adv. Funct. Mater. 2005, 15, 494. https://doi.org/10.1002/adfm.200400095
  49. Bae, J. Colloid Polym Sci. 2011, 289, 1233. https://doi.org/10.1007/s00396-011-2449-1
  50. Jang, J.; Oh, J. Adv. Mater. 2004, 16, 1650. https://doi.org/10.1002/adma.200400032
  51. Aurbach, D.; Nimberger, A.; Markovsky, B.; Levi, E.; Sominski, E.; Gedanken, A. Chem. Mater. 2002, 14, 4155. https://doi.org/10.1021/cm021137m
  52. Kang, E.; Jung, Y. S.; Cavanagh, A. S.; Kim, G.; George, S. M.; Dillon, A. C.; Kim, J. K.; Lee, J. Adv. Funct. Mater. 2011, 21, 2430. https://doi.org/10.1002/adfm.201002576
  53. Kang, E.; Jung, Y. S.; Kim, G.; Chun, J.; Wiesner, U.; Dillon, A. C.; Kim, J. K.; Lee, J. Adv. Funct. Mater. 2011, 21, 4349. https://doi.org/10.1002/adfm.201101123

Cited by

  1. A Review on Materials Derived from Polystyrene and Different Types of Nanoparticles vol.54, pp.17, 2015, https://doi.org/10.1080/03602559.2015.1038838
  2. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries vol.9, pp.1, 2014, https://doi.org/10.1186/1556-276X-9-360
  3. High-Performance Soft Carbons Prepared by Treatment with Various Phosphorus Acids vol.35, pp.8, 2012, https://doi.org/10.5012/bkcs.2014.35.8.2357
  4. Research Progress of Silicon/Carbon Anode Materials for Lithium‐Ion Batteries: Structure Design and Synthesis Method vol.7, pp.21, 2012, https://doi.org/10.1002/celc.202001060