DOI QR코드

DOI QR Code

Synthesis of New Heterocycles Derived from 3-(3-Methyl-1H-indol-2-yl)-3-oxopropanenitrile as Potent Antifungal Agents

  • Gomha, Sobhi M. (Department of Chemistry, Faculty of Science, University of Cairo) ;
  • Abdel-Aziz, Hatem A. (Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University)
  • Received : 2012.01.31
  • Accepted : 2012.06.16
  • Published : 2012.09.20

Abstract

New thiazoline derivatives 7a-c, and thiophenes 9a-c linked to indole moiety were easily prepared via the reaction of the acrylamide derivative 3 with phenacyl bromides 4a-c, depending on the reaction conditions. In addition, the reaction of compound 3 with hydrazonoyl chlorides 11a-f afforded a series of 1,3,4-thiadiazole derivatives 13a-f. Moreover, coupling of 3-(3-methyl-1H-indol-2-yl)-3-oxopropanenitrile (2) with the diazonium salts of 3-phenyl-5-aminopyrazole 16 or 3-amino-1,2,4-triazole 17 gave the corresponding hydrazones 18 and 19, respectively. Cyclization of the latter hydrazones yielded the corresponding pyrazolo[5,1-c]-1,2,4-triazine and 1,2,4-triazolo[5,1-c]-1,2,4-triazine derivatives 20 and 21, respectively. The structures of the synthesized compounds were assigned on the basis of elemental analysis, IR, $^1H$ NMR and mass spectral data. All the synthesized compounds were tested for in vitro activities against certain strains of fungi such as Aspergillus niger, Aspergillus nodulans, Alternaria alternate. Compounds showed marked inhibition of fungal growth nearly equal to the standards.

Keywords

References

  1. Kuethe, J. T.; Wong, A.; Qu, C.; Smitrovich, J.; Davis, I. W.; Hughes, D. L. J. Org. Chem. 2005, 70, 504.
  2. Varvaresou, A.; Tsantili-Kakoulidou, A.; Siatra-Papastaikoudi, T.; Tiligada, E. Arzneim Forsch 2000, 50, 48-54.
  3. Mohan, J.; Kataria, S. Indian Chem. J. Sect. B 1996, 35, 456-458.
  4. Palluotto, F.; Carotti, A.; Casini, G.; Ferappi, M.; Rosata, A.; Vitali, C.; Campagna, F. Farmaco 1999, 54(3), 191-194. https://doi.org/10.1016/S0014-827X(99)00021-X
  5. Dzurilla, M.; Ruzinsky, M.; Kutschy, P.; Tewari, J.; Kovacik, V. Collect. Czech. Chem. Commun. 1999, 64, 1448-1456. https://doi.org/10.1135/cccc19991448
  6. Kutsky, P.; Dzurilla, T. M.; Sabova, A. Collect. Czech. Chem. Commun. 1999, 64, 348-362. https://doi.org/10.1135/cccc19990348
  7. Kutsky, P.; Dzurilla, M.; Takasugi, M.; Toerock, M.; Achbergerova, I. Tetrahedron 1998, 54, 3549-3566. https://doi.org/10.1016/S0040-4020(98)00088-X
  8. Khan, M. H.; Twari, S.; Begum, K.; Nizamuddin, 0, Indian Chem. J. Sect. B 1998, 37, 1075-1077.
  9. Machia, M.; Mamera, C.; Nencetti, S.; Rossello, A.; Broccali, G.; Limonta, D. Farmaco 1996, 51, 75-78.
  10. Garuti, L.; Roberti, M.; Rossi, T.; Castelli, M.; Malagoli, M. Eur. J. Med. Chem. Chem. 1998, Ther. 33, 43-46. https://doi.org/10.1016/S0223-5234(99)80074-9
  11. Draheim, S. A.; Bach, N. J.; Dillard, R. D.; Berry, D. R.; Carlson, D. G. J. Med. Chem. 1996, 39, 5159-5175. https://doi.org/10.1021/jm960487f
  12. Battagba, S.; Boldrini, E.; Settimo, F. D.; Dondio, G.; Motta, C. L. Eur. J. Med. Chem. Chim. Ther. 1999, 34, 93-106. https://doi.org/10.1016/S0223-5234(99)80044-0
  13. Zotova, S. A.; Korneeva, T. M.; Shvedov, V. I.; Fadaeva, N. I.; Leneva, I. A. Pharm. Chem. J. 1995, 29, 57-59. https://doi.org/10.1007/BF02219467
  14. Lai, G.; Anderson, W. K. Tetrahedron 2000, 56, 2583-2590. https://doi.org/10.1016/S0040-4020(00)00177-0
  15. Amir, M.; Dhar, N.; Tiwari, S. K. Indian. J. Chem. Sect. B 1997, 36, 96-98.
  16. Grasso, S.; Molica, C.; Monforte, A. M.; Monforte, P.; Zappala, M. Farmaco 1995, 50, 113-118.
  17. Katayama, M.; Gautam, R. K. Biosci. Biotechnol. Biochem. 1996, 60, 755-759. https://doi.org/10.1271/bbb.60.755
  18. Riyadh, S. M.; Farghaly, T. A.; Gomha, S. M. Arch. Pharm. Res. 2010, 33, 1721. https://doi.org/10.1007/s12272-010-1102-8
  19. Gomha, S. M.; Riyadh, S. M. ARKIVOC 2009, xi, 58-68.
  20. Abbas, I. M.; Riyadh, S. M.; Abdallah, M. A.; Gomha, S. M. J. Het. Chem. 2006, 43, 935-942. https://doi.org/10.1002/jhet.5570430419
  21. Abdel-Aziz, H. A.; Saleh, T. S.; El-Zahabi, H. S. A. Arch. Pharm. 2010, 343, 24-30.
  22. Abdel-Aziz, H. A.; Hamdy, N. A.; Gamal-Eldeen, A. M.; Fakhr, I. M. I. Z. Naturforsch C 2011, 66, 7. https://doi.org/10.5560/ZNB.2011.66c0007
  23. Acheson, R. M.; Prince, R. J.; Procter, G. J. Chem. Soc., Perkin Trans. 1 1979, 3, 595-599.
  24. Cowper, R. M.; Davidson, L. H. Org. Syn., Coll. 1943, II, 840.
  25. Dieckmann, W.; Platz, O. Chem. Ber. 1906, 38, 2989.
  26. Hegarty, A. F.; Cashoman, M. P.; Scott, F. L. Chem. Commun. 1971, 13, 684.
  27. National Committee for Clinical Laboratory Standards (NCCLS), "Standard Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria, Which Grows Aerobically," Nat. Comm. Lab. Stands. Villanova, 1982; p 242.
  28. Habib, N. S.; Rida, S. M.; Badawey, E. A. M.; Fahmy, H. T. Y.; Ghozlan, H. A. Pharmazie 1997, 52, 346-350.
  29. Bondock, S.; Fadaly, W.; Metwally, M. A. Eur. J. Med. Chem. 2010, 45, 3692. https://doi.org/10.1016/j.ejmech.2010.05.018
  30. Rostom, S. A. F.; El-Ashmawy, I. M.; Abd El Razik, H. A.; Badr, M. H.; Ashour, H. M. A. Bioorg. Med. Chem. 2009, 17, 882. https://doi.org/10.1016/j.bmc.2008.11.035
  31. Farag, A. M.; Dawood, K. M.; Kandeel, Z. E. Tetrahedron 1997, 53, 161. https://doi.org/10.1016/S0040-4020(96)00959-3
  32. Hamdy, N. A.; Abdel-Aziz, H. A.; Farag, A. M.; Fakhr, I. M. I. Monatsh. fur Chem. 2007, 138, 1001-1010. https://doi.org/10.1007/s00706-007-0717-z
  33. Dawood, K. M.; Farag, A. M.; Abdel-Aziz, H. A. J. Chem. Res. 2005, 378-381.

Cited by

  1. 3-Amino-8-hydroxy-4-imino-6-methyl-5-phenyl-4,5-dihydro-3H-chromeno [2,3-d ]pyrimidine: An Effecient Key Precursor for Novel Synthesis of Some Interesting Triazines and Triazepines as Potential Anti-Tumor Agents vol.17, pp.12, 2012, https://doi.org/10.3390/molecules171011538
  2. A Convenient Ultrasound-Promoted Synthesis of Some New Thiazole Derivatives Bearing a Coumarin Nucleus and Their Cytotoxic Activity vol.17, pp.12, 2012, https://doi.org/10.3390/molecules17089335
  3. Novel anti-HIV-1 NNRTIs based on a pyrazolo[4,3-d]isoxazole backbone scaffold: design, synthesis and insights into the molecular basis of action vol.5, pp.11, 2014, https://doi.org/10.1039/C4MD00282B
  4. Synthesis and Anti-cancer Activity of 1,3,4-Thiadiazole and 1,3-Thiazole Derivatives Having 1,3,4-Oxadiazole Moiety vol.52, pp.5, 2015, https://doi.org/10.1002/jhet.2250
  5. Synthesis, characterization, and pharmacological evaluation of some novel thiadiazoles and thiazoles incorporating pyrazole moiety as anticancer agents vol.146, pp.1, 2015, https://doi.org/10.1007/s00706-014-1303-9
  6. Synthesis and Cytotoxicity Evaluation of Some Novel Thiazoles, Thiadiazoles, and Pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-ones Incorporating Triazole Moiety vol.20, pp.1, 2015, https://doi.org/10.3390/molecules20011357
  7. Synthesis and Characterization of Bisimidazoles, Bistriazoles, Bisthiadiazoles, and Bisthiazoles from Novel Bishydrazonoyl Dichlorides vol.53, pp.1, 2016, https://doi.org/10.1002/jhet.2320
  8. Synthesis of New 3-Heteroarylindoles as Potential Anticancer Agents vol.21, pp.7, 2016, https://doi.org/10.3390/molecules21070929
  9. -Heterocycles Incorporating Thienothiophene vol.54, pp.1, 2017, https://doi.org/10.1002/jhet.2636
  10. Hydrazonoyl Halides Precursors to Synthesis of New Thiazole, Thiadiazole, and Benzothiazepine Derivatives vol.54, pp.2, 2017, https://doi.org/10.1002/jhet.2688
  11. Synthesis of Pyridotriazolopyrimidines as Antitumor Agents vol.54, pp.2, 2017, https://doi.org/10.1002/jhet.2699
  12. A facile synthesis and anticancer activity of some novel thiazoles carrying 1,3,4-thiadiazole moiety vol.11, pp.1, 2017, https://doi.org/10.1186/s13065-017-0255-7
  13. Synthesis of some new pyrazolo[1,5-a]pyrimidine, pyrazolo[5,1-c]triazine, 1,3,4-thiadiazole and pyridine derivatives containing 1,2,3-triazole moiety vol.11, pp.1, 2017, https://doi.org/10.1186/s13065-017-0282-4
  14. A facile access and evaluation of some novel thiazole and 1,3,4-thiadiazole derivatives incorporating thiazole moiety as potent anticancer agents vol.11, pp.1, 2017, https://doi.org/10.1186/s13065-017-0335-8
  15. Synthesis, Antitumor Evaluation and Molecular Docking of New Morpholine Based Heterocycles vol.22, pp.7, 2017, https://doi.org/10.3390/molecules22071211
  16. Synthesis and characterization of new pyrazole-based thiazoles vol.47, pp.15, 2017, https://doi.org/10.1080/00397911.2017.1330961
  17. Synthetic Utility of Pyridinium Bromide: Synthesis and Antimicrobial Activity of Novel 2,4,6-Trisubstituted Pyridines Having Pyrazole Moiety vol.54, pp.3, 2017, https://doi.org/10.1002/jhet.2790
  18. Synthesis of Some Novel Heterocycles Bearing Thiadiazoles as Potent Anti-inflammatory and Analgesic Agents vol.54, pp.5, 2017, https://doi.org/10.1002/jhet.2872
  19. Utility of Pyrazolylchalcone Synthon to Synthesize Azolopyrimidines under Grindstone Technology vol.65, pp.1, 2017, https://doi.org/10.1248/cpb.c16-00759
  20. Ecofriendly one-pot synthesis and antiviral evaluation of novel pyrazolyl pyrazolines of medicinal interest vol.40, pp.13036130, 2016, https://doi.org/10.3906/kim-1510-25
  21. Synthesis and biological evaluation of some novel thiadiazole-benzofuran hybrids as potential antitumor agents vol.48, pp.6, 2018, https://doi.org/10.1080/00397911.2017.1416637
  22. Intramolecular Ring Transformation of Bis-oxadiazoles to Bis-thiadiazoles and Investigation of Their Anticancer Activities vol.55, pp.10, 2018, https://doi.org/10.1002/jhet.3300
  23. -Thiadiazoles as Potent Antimicrobial Agents vol.55, pp.4, 2018, https://doi.org/10.1002/jhet.3108
  24. ]pyrimidinones vol.55, pp.5, 2018, https://doi.org/10.1002/jhet.3146
  25. Synthesis and biological evaluation of an indole core-based derivative with potent antimicrobial activity vol.44, pp.9, 2018, https://doi.org/10.1007/s11164-018-3426-9
  26. Synthetic Utility of Ethylidenethiosemicarbazide: Synthesis and Anticancer Activity of 1,3-Thiazines and Thiazoles with Imidazole Moiety vol.87, pp.2, 2012, https://doi.org/10.3987/com-12-12625
  27. A Convenient Synthesis of Some New Thiazole and Pyrimidine Derivatives Incorporating a Naphthalene Moiety vol.37, pp.2, 2012, https://doi.org/10.3184/174751912x13567137687630
  28. An Efficient Synthesis of Functionalised 2-(heteroaryl)-3H-benzo[f] Chromen-3-ones and Antibacterial Evaluation vol.37, pp.5, 2012, https://doi.org/10.3184/174751913x13662197808100
  29. Synthesis and Antihypertensive α-Blocking Activity Evaluation of Thiazole Derivatives Bearing Pyrazole Moiety vol.91, pp.9, 2015, https://doi.org/10.3987/com-15-13290
  30. Synthesis and Characterisation of Some Novel Fused Thiazolo[3,2-A] Pyrimidinones and Pyrimido[2,1-B][1,3]Thiazinones vol.39, pp.12, 2012, https://doi.org/10.3184/174751915x14474391581067
  31. Heterocyclisation of 2,5-diacetyl-3,4-disubstituted-thieno[2,3-b]Thiophene Bis-Thiosemicarbazones Leading to Bis-Thiazoles and Bis-1,3,4-thiadiazoles as Anti-breast Cancer Agents vol.40, pp.2, 2016, https://doi.org/10.3184/174751916x14537182696214
  32. Synthesis of Some Novel Thiadiazoles and Thiazoles Linked to Pyrazole Ring vol.92, pp.4, 2016, https://doi.org/10.3987/com-15-13370
  33. Application of Mannich and Michael Reactions in Synthesis of Pyridopyrimido[2,1-b][1,3,5]thiadiazinones and Pyridopyrimido[2,1-b][1,3]thiazinones as Anticancer Agents vol.92, pp.4, 2012, https://doi.org/10.3987/com-16-13419
  34. DABCO-Catalyzed Green Synthesis of Thiazole and 1,3-Thiazine Derivatives Linked to Benzofuran vol.92, pp.8, 2012, https://doi.org/10.3987/com-16-13470
  35. A facile synthesis and characterization of some new thiophene based heterocycles vol.1149, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2017.08.057
  36. Highly Efficient [3 + 2] Cycloaddition: Click Synthesis of Novel 1 H ‐indol‐3‐yl‐benzo[ d ]imidazole Bis‐triazoles vol.56, pp.9, 2012, https://doi.org/10.1002/jhet.3679
  37. A new series of thiazolyl pyrazoline derivatives linked to benzo[1,3]dioxole moiety: Synthesis and evaluation of antimicrobial and anti-proliferative activities vol.50, pp.3, 2012, https://doi.org/10.1080/00397911.2019.1695839
  38. Synthesis, crystal structure, spectroscopic, electronic and nonlinear optical properties of potent thiazole based derivatives: Joint experimental and computational insight vol.1202, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2019.127354
  39. Methods of Synthesis for the Azolo[1,2,4]Triazines vol.56, pp.10, 2020, https://doi.org/10.1007/s10593-020-02808-z
  40. Novel nano-architectured carbon quantum dots (CQDs) with phosphorous acid tags as an efficient catalyst for the synthesis of multisubstituted 4H-pyran with indole moieties under mild conditions vol.11, pp.42, 2012, https://doi.org/10.1039/d1ra02515e