References
- Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. https://doi.org/10.1038/35104644
- Bishop, A. G.; Macfarlane, D. R.; McNaughton, D.; Forsyth, M. J. Phys. Chem. 1996, 100, 2237. https://doi.org/10.1021/jp9520456
- Quartarone, E.; Mustarelli, P.; Magistris, A. Solid State Ionics 1998, 110, 1. https://doi.org/10.1016/S0167-2738(98)00114-3
- Liu, J.; Huang, X.; Duan, J.; Ai, H.; Tu, P. Mat. Lett. 2005, 59, 3710. https://doi.org/10.1016/j.matlet.2005.06.043
- Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; Wiley: New York, 1970.
- Wunderlich, B. Macromolecular Physics; Academic Press: New York, 1980, 3, 67.
- Papke, B. L.; Ratner, M. A.; Shriver, D. F. J. Electrochem. Soc. 1982, 129, 1434. https://doi.org/10.1149/1.2124179
- Wen, S. J.; Richrdson, T. J.; Ghantous, D. I.; Striebel, K. A.; Ross, P. N.; Cairns, E. J. J. Electroanal. Chem. 1996, 408, 113. https://doi.org/10.1016/0022-0728(96)04536-6
- Fan, L.; Dang, Z.; Wei, G.; Wen, N. C.; Li, M. Mater. Sci. and Eng. B 2003, 99, 340. https://doi.org/10.1016/S0921-5107(02)00487-7
- Maier, J. Solid State Ionics 1994, 70-71, 43. https://doi.org/10.1016/0167-2738(94)90285-2
- Maier, J. Prog. Solid State Chem. 1995, 23, 171. https://doi.org/10.1016/0079-6786(95)00004-E
- Wieczorek, W.; Raducha, D.; Zalewska, A. J. Phys. Chem. B 1998, 102, 8725. https://doi.org/10.1021/jp982403f
- Sharma, J. P.; Sekhon, S. S. Solid State Ionics 2007, 178, 439. https://doi.org/10.1016/j.ssi.2007.01.017
- Hashmi, S. A.; Upadhayaya, H. M.; Thakur, A. K. Solid State Ionics: Materials and Devices; Chodari, B. V. R., Wang, W., Eds.; World Scientific: Singapore, 2000; p 461.
- Pandey, G. P.; Hashmi, S. A.; Agrawal, R. C. Solid State Ionics 2008, 179, 543. https://doi.org/10.1016/j.ssi.2008.04.006
- Kumar, B. J. Power Sources 2004, 135, 215. https://doi.org/10.1016/j.jpowsour.2004.04.038
- Kumar, B.; Nellutla, S.; Thokchom, J. S.; Chen, C. J. Power Sources 2006, 160, 1329. https://doi.org/10.1016/j.jpowsour.2006.02.062
- Tsunemi, K.; Ohno, H.; Tsuchida, E. Electrochem. Acta 1983, 28(6), 833. https://doi.org/10.1016/0013-4686(83)85155-X
- Baskaran, R.; Selvasekarapandian, S.; Kuwata, N.; Kawamura, J.; Hattori, T. J. Phys. and Chem. of Sol. 2007, 68, 407. https://doi.org/10.1016/j.jpcs.2006.12.001
- Cowie, J. M. G.; Spence, G. H. Solid State Ionics 1998, 109, 139.
- Awadhia, A.; Patel, S. K.; Agrawal, S. L. Prog. in Crystal Growth and Character. of Mater. 2006, 52, 61. https://doi.org/10.1016/j.pcrysgrow.2006.03.009
- Finch, C. A. Polyvinyl Alcohol: Properties and Applications; John Wiley; Sons Ltd., London, 1973.
- Singh, K. P.; Gupta, P. N.; Singh, R. P. J. Polym. Mater. 1992, 9, 131.
Cited by
- = 4)) on Thermal, Mechanical, and Electrical Properties of PEO-Based Solid Polymer Electrolytes vol.36, pp.2, 2017, https://doi.org/10.1002/adv.21581
- Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li-battery applications vol.21, pp.5, 2017, https://doi.org/10.1007/s10008-016-3477-z
- Effect of Al2O3 nanofiller on the electrical, thermal and structural properties of PEO:PPG based nanocomposite polymer electrolyte vol.23, pp.6, 2017, https://doi.org/10.1007/s11581-017-1976-2
- Effect of Al2O3 Nanofiller on ion conductivity, transmittance, and glass transition temperature of PEI:LiTFSI:PC:EC polymer electrolytes vol.24, pp.1, 2017, https://doi.org/10.1007/s10965-016-1172-5
- Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films vol.24, pp.3, 2017, https://doi.org/10.1007/s10965-017-1218-3
- Impedance Spectroscopy as a Novel Approach to Probe the Phase Transition and Microstructures Existing in CS:PEO Based Blend Electrolytes vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-32662-1
- Enhanced properties of Gamma irradiated nano spinels containing cobalt and alumnium ions : Effect of Gamma radiation on structure, electrical, magnetic and thermal stability properties pp.1862-0760, 2018, https://doi.org/10.1007/s11581-018-2676-2
- Polymer-spinel ferrite composite containing nickel, magnesium, and nickel-magnesium ions: Structural, magnetic, electrical, and thermal stability properties vol.37, pp.8, 2018, https://doi.org/10.1002/adv.22155
- Montmorillonite incorporated polymethylmethacrylate matrix containing lithium trifluoromethanesulphonate (LTF) salt: thermally stable polymer nanocomposite electrolyte for lithium-ion batteries applic vol.25, pp.6, 2012, https://doi.org/10.1007/s11581-018-2802-1
- Increase of metallic silver nanoparticles in Chitosan:AgNt based polymer electrolytes incorporated with alumina filler vol.13, pp.None, 2012, https://doi.org/10.1016/j.rinp.2019.102326
- Zinc ion conducting blended polymer electrolytes based on room temperature ionic liquid and ceramic filler vol.136, pp.24, 2012, https://doi.org/10.1002/app.47654
- Structure and Properties of Nanocomposites Prepared via the Environmental Crazing of Poly(ethylene terephthalate) in Solutions of Polyelectrolyte Complexes vol.89, pp.10, 2012, https://doi.org/10.1134/s1070363219100165
- Synthesis, Characterization, and Applications of Polymer Nanocomposites vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/5439136
- Solid Electrolytes for Li-S Batteries: Solid Solutions of Poly(ethylene oxide) with LixPON- and LixSiPON-Based Polymers vol.12, pp.27, 2012, https://doi.org/10.1021/acsami.0c06196
- Thermal Stability Analysis of Lithium-Ion Battery Electrolytes Based on Lithium Bis(trifluoromethanesulfonyl)imide-Lithium Difluoro(oxalato)Borate Dual-Salt vol.13, pp.5, 2012, https://doi.org/10.3390/polym13050707
- Polyethylene Oxide-Based Solid-State Composite Polymer Electrolytes for Rechargeable Lithium Batteries vol.4, pp.5, 2012, https://doi.org/10.1021/acsaem.1c00216
- Increase of Solid Polymer Electrolyte Ionic Conductivity Using Nano-SiO2 Synthesized from Sugarcane Bagasse as Filler vol.13, pp.23, 2012, https://doi.org/10.3390/polym13234240