DOI QR코드

DOI QR Code

Hydrothermal Synthesis, Crystal Structure of Four Novel Complexes Based on Thiabendazole Ligand

  • Wei, Shui-Qiang (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Lin, Cui-Wu (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Yin, Xian-Hong (College of Chemistry and Chemical Engineering, Guangxi University for Nationalities) ;
  • Huang, Yue-Jiao (College of Chemistry and Chemical Engineering, Guangxi University for Nationalities) ;
  • Luo, Pei-Qi (College of Chemistry and Chemical Engineering, Guangxi University for Nationalities)
  • Received : 2012.05.15
  • Accepted : 2012.06.01
  • Published : 2012.09.20

Abstract

Four novel metal-organic complexes $[Cd_2(IP)_2(TBZ)_2(H_2O)_2]{\cdot}(H_2O)$ (1), $[Zn_4(IP)_4(TBZ)_4]{\cdot}2(H_2O)$ (2), $[Zn_2(BTC)(TBZ)_2(CO_2H)]$ (3), [Co(PDC)(TBZ)] (4) (where IP = isophthalate; TBZ = thiabendazole; BTC = 1,3,5-benzenetricarboxylate; PDC = pyridine-3,4-dicarboxylate) have been prepared and characterized by IR spectrum, elemental analysis, thermogravimetric analysis, and single-crystal X-ray diffraction. X-ray structure analysis reveals that 1, 2, and 3 are one-dimensional chain polymers, while 4 is a two-dimensional network polymer. The TBZ acts as a typical chelating ligand coordinated to the metal center in all complexes. The 1D chain architecture of 1 is constructed from isophthalates and cadmium atoms. A simultaneous presence of chelating, monodentate and bidentate coordination modes of IP ligands is observed in complex 2. In complex 3, the 16-membered rings are alternately arranged forming an infinite 1D double-chain structure. The 2D skeleton of 4 is formed by cobalt ions as nodes and PDC dianions as spacers, through coordination bonds. The hydrogen bonds and ${\pi}-{\pi}$ stacking play important roles in affecting the final structure where complexes 1 and 3 have 2D supramolecular networks, while complexes 2 and 4 have 3D supramolecular architectures.

Keywords

References

  1. Lin, H. S.; Maggard, P. A. Inorg. Chem. 2007, 46, 1283. https://doi.org/10.1021/ic061767g
  2. Zheng, S. R.; Yang, Q. Y.; Yang, R.; Pan, M.; Cao, R.; Su, C. Y. Cryst. Growth Des. 2009, 9, 2341. https://doi.org/10.1021/cg801228x
  3. Chapman, M. E.; Ayyappan, P.; Foxman, B. M.; Yee, G. T.; Lin, W. B. Cryst. Growth Des. 2001, 1, 159. https://doi.org/10.1021/cg005519l
  4. Steel, P. J. Acc. Chem. Res. 2005, 38, 243-250. https://doi.org/10.1021/ar040166v
  5. Zhang, J.; Lin, W. B.; Chen, Z. F.; Xiong, R. G.; Abrahams, B. F.; Fun, H. K. J. Chem. Soc., Dalton Trans. 2001, 1806.
  6. Lin, W. B.; Ma, L.; Evans, O. R. Chem. Commun. 2000, 2263.
  7. Ye, B. H.; Tong, M. L.; Chen, X. M. Coord. Chem. Rev. 2005, 249, 545. https://doi.org/10.1016/j.ccr.2004.07.006
  8. Go, Y. B.; Wang, X.; Anokhina, E. V.; Jacobson, A. J. Inorg. Chem. 2005, 44, 8265-8271. https://doi.org/10.1021/ic050644d
  9. Ye, B.-H.; Williams, I. D.; Li, X.-Y. Inorg. Biochemistry 2002, 128-136.
  10. Pruchnik, F. P.; Dawid, U.; Kochel, A. Polyhedron 2006, 25, 3647-3652. https://doi.org/10.1016/j.poly.2006.07.023
  11. Ye, B.-H.; Tong, M.-L.; Chen, X.-M. Coordin. Chem. Rew. 2005, 249, 545-565. https://doi.org/10.1016/j.ccr.2004.07.006
  12. Xu, Y.-Q.; Zhou, Y.-F.; Yuan, D.-Q.; Hong, M.-C. Chinese J. Struct. Chem. 2006, 25, 1161-1166.
  13. Devereux, M.; McCann, M.; Shea, D. O.; Kelly, R.; Egan, D.; Deegan, C.; McKee, V. J. Inorg. Biochem. 2004, 98, 1023-1031. https://doi.org/10.1016/j.jinorgbio.2004.02.020
  14. James, D. M., Gilles, H. M., Eds.; John Wiley & Sons: 1996; p 206.
  15. Kaniskan, N.; Ogretir, C. J. Mol. Struct. 2002, 584, 45-52. https://doi.org/10.1016/S0166-1280(02)00018-0
  16. Kumar, D. K.; Das, A.; Dastidar, P. Cryst. Growth Des. 2006, 6, 1903. https://doi.org/10.1021/cg0600344
  17. Lu, W. G.; Jiang, L.; Lu, T. B. Cryst. Growth Des. 2008, 8, 986. https://doi.org/10.1021/cg700979r
  18. Wang, J.-J.; Lv, M.; Sun, Y.-M.; Cui, Y.-C. Chinese J. Struct. Chem. 2009, 28, 434-438.
  19. Wang, J.-J.; Cui, Y.-C.; Liu, L.-H.; Huang, Y.-J. Chinese J. Struct. Chem. 2010, 29, 240-244.
  20. Sheldrick, G. M. SADABS. Program for Empirical Absorption Correction of Area Detector; University of Gottingen: Germany, 1996.
  21. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Gottingen: Germany, 1997.
  22. Chen, J.; Ohba, M.; Kitagawa, S. Chem. Lett. 2006, 35, 526. https://doi.org/10.1246/cl.2006.526
  23. Li, Z.-X.; Zhao, J.-P.; Sanudo, E. C. Inorg. Chem. 2009, 48, 11601-11607. https://doi.org/10.1021/ic901564y
  24. Hawxwell, S. M.; Brammer, L. CrystEngComm. 2006, 8, 473. https://doi.org/10.1039/b603274e
  25. Burrows, A. D.; Cassar, K.; Friend, R. M. W. CrystEngComm. 2005, 7, 548. https://doi.org/10.1039/b509460g
  26. Chen, W.; Wang, J. Y.; Chen, C. Inorg. Chem. 2003, 42, 944. https://doi.org/10.1021/ic025871j
  27. Pachfule, P.; Dey, C.; Panda, T. Cryst. Growth Des. 2010, 10, 1351-1361. https://doi.org/10.1021/cg9013812

Cited by

  1. Syntheses, structures, and luminescent properties of two cadmium(II) and manganese(II) coordination polymers based on the 11-fluoro-dipyrido[3,2-a:2′,3′-c]-phenazine ligand vol.38, pp.4, 2013, https://doi.org/10.1007/s11243-013-9710-z
  2. Hydrothermal Synthesis and Crystal Structures of Three Novel Cobalt(II) Complexes Based on Thiabendazole Ligand vol.43, pp.5, 2013, https://doi.org/10.1080/15533174.2012.749896
  3. Syntheses and Characterization of Three Coordination Polymers of Zinc(II) and Cadmium(II) with Dicarboxylates and Bis(thiabendazole) Ligands vol.26, pp.5, 2016, https://doi.org/10.1007/s10904-016-0397-4