DOI QR코드

DOI QR Code

Synthesis and Applications of Noble Metal and Metal Silicide and Germanide 1-Dimensional Nanostructures

  • Received : 2011.10.27
  • Accepted : 2012.06.12
  • Published : 2012.09.20

Abstract

This review covers recent developments in our group regarding the synthesis, characterization and applications of single-crystalline one-dimensional nanostructures based on a wide range of material systems including noble metals, metal silicides and metal germanides. For the single-crystalline one-dimensional nanostructures growth, we have employed chemical vapor transport approach without using any catalysts, capping reagents, and templates because of its simplicity and wide applicability. Au, Pd, and Pt nanowires are epitaxially grown on various substrates, in which the nanowires grow from seed crystals by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. We also present the synthesis of numerous metal silicide and germanide 1D nanostructures. By simply varying reaction conditions, furthermore, nanowires of metastable phase, such as $Fe_5Si_3$ and $Co_3Si$, and composition tuned cobalt silicides (CoSi, $Co_2Si$, $Co_3Si$) and iron germanides ($Fe_{1.3}Ge$ and $Fe_3Ge$) nanowires are synthesized. Such developments can be utilized as advanced platforms or building blocks for a wide range of applications such as plasmonics, sensings, nanoelectronics, and spintronics.

Keywords

References

  1. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Chem. Rev. 2011, 111, 3669-3712. https://doi.org/10.1021/cr100275d
  2. Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C. M. Science 2010, 329, 830-834. https://doi.org/10.1126/science.1192033
  3. Hochbaum, A. I.; Yang, P. Chem. Rev. 2010, 110, 527-546. https://doi.org/10.1021/cr900075v
  4. Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nat. Mater. 2010, 9, 821-826. https://doi.org/10.1038/nmat2835
  5. Lu, W.; Lieber, C. M. Nat. Mater. 2007, 6, 841-850. https://doi.org/10.1038/nmat2028
  6. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. Nat. Nanotech. 2008, 3, 31-35. https://doi.org/10.1038/nnano.2007.411
  7. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353-389. https://doi.org/10.1002/adma.200390087
  8. Yan, R.; Gargas, D.; Yang, P. Nat. Photon. 2009, 3, 569-576. https://doi.org/10.1038/nphoton.2009.184
  9. Wu, B.; Heidelberg, A.; Boland, J. J. Nat. Mater. 2005, 4, 525- 529. https://doi.org/10.1038/nmat1403
  10. Teo, B. K.; Sun, X. H. Chem. Rev. 2007, 107, 1454-1532. https://doi.org/10.1021/cr030187n
  11. Huang, J.-S.; Callegari, V.; Geisler, P.; Brüning, C.; Kern, J.; Prangsma, J. C.; Wu, X.; Feichtner, T.; Ziegler, J.; Weinmann, P.; Kamp, M.; Forchel, A.; Biagioni, P.; Sennhauser, U.; Hecht, B. Nat. Commun. 2010, 1:150 doi: 10.1038/ncomms1143.
  12. Yoon, I.; Kang, T.; Choi, W.; Kim, J.; Yoo, Y.; Joo, S.-W.; Park, Q.-H.; Ihee, H.; Kim, B. J. Am. Chem. Soc. 2009, 131, 758-762. https://doi.org/10.1021/ja807455s
  13. Kang, T.; Yoo, S. M.; Yoon, I.; Lee, S. Y.; Kim, B. Nano Lett. 2010, 10, 1189-1193. https://doi.org/10.1021/nl1000086
  14. Kang, T.; Yoo, S. M.; Yoon, I.; Lee, S.; Choo, J.; Lee, S. Y.; Kim, B. Chem. Eur. J. 2011, 17, 2211-2214. https://doi.org/10.1002/chem.201001663
  15. Mohanty, P.; Yoon, I.; Kang, T.; Seo, K.; Varadwaj, K. S. K.; Choi, W.; Park, Q.-H.; Ahn, J. P.; Suh, Y. D.; Ihee, H.; Kim, B. J. Am. Chem. Soc. 2007, 129, 9576-9577. https://doi.org/10.1021/ja073050d
  16. Akimov, A. V.; Mukherjee, A.; Yu, C. L.; Chang, D. E.; Zibrov, A. S.; Hemmer, P. R.; Park, H.; Lukin, M. D. Nature 2007, 450, 402- 406. https://doi.org/10.1038/nature06230
  17. Chen, S.-Y.; Yeh, P.-H.; Wu, W.-W.; Chen, U.-S.; Chueh, Y.- L.; Yang, Y.-C.; Gwo, S.; Chen, L.-J. ACS Nano 2011, 5, 9202- 9207. https://doi.org/10.1021/nn203445p
  18. Lee, C.-Y.; Lu, M.-P.; Liao, K.-F.; Lee, W.-F.; Huang, C.-T.; Chen, S.-Y.; Chen, L.-J. J. Phys. Chem. C 2009, 113, 2286- 2289. https://doi.org/10.1021/jp809029q
  19. Lin, Y.-C.; Lu, K.-C.; Wu, W.-W.; Bai, J.; Chen, L. J.; Tu, K. N.; Huang, Y. Nano Lett. 2008, 8, 913-918. https://doi.org/10.1021/nl073279r
  20. Burchhart, T.; Lugstein, A.; Hyun, Y. J.; Hochleitner, G.; Bertagnolli, E. Nano Lett., 2009, 9, 3739-3742. https://doi.org/10.1021/nl9019243
  21. Tang, J.; Wang, C.-Y.; Xiu, F.; Lang, M.; Chu, L.-W.; Tsai, C.- J.; Chueh, Y.-L.; Chen, L.-J.; Wang, K. L. ACS Nano 2011, 5, 6008-6015. https://doi.org/10.1021/nn2017777
  22. Yan, C.; Higgins, J. M.; Faber, M. S.; Lee, P. S.; Jin, S. ACS Nano 2011, 5, 5006-5014. https://doi.org/10.1021/nn201108u
  23. Seo, K.; Bagkar, N.; Kim, S.-I.; In, J.; Yoon, H.; Jo, Y.; Kim, B. Nano Lett. 2010, 10, 3643-3647. https://doi.org/10.1021/nl102093e
  24. Ionescu, A.; Vaz, C. A. F.; Trypiniotis, T.; Gürtler, C. M.; García- Miquel, H.; Bland, J. A. C.; Vickers, M. E.; Dalgliesh, R. M.; Langridge, S.; Bugoslavsky, Y.; Miyoshi, Y.; Cohen, L. F.; Ziebeck, K. R. A. Phys. Rev. B 2005, 71, 094401/1-094401/9.
  25. Jamet, M.; Barski, A.; Devillers, T.; Poydenot, V.; Dujardin, R.; Bayle-Guillemaud, P.; Rothman, J.; Bellet-Amalric, E.; Marty, A.; Cibert, J.; Mattana, R.; Tatarenko, S. Nat. Mater. 2006, 5, 653- 659. https://doi.org/10.1038/nmat1686
  26. Sattler, W. W.; Saur, E. J. J. Magn. Magn. Mater. 1979, 11, 189- 192. https://doi.org/10.1016/0304-8853(79)90262-2
  27. Sun, Y.; Zhang, L.; Zhou, H.; Zhu, Y.; Sutter, E.; Ji, Y.; Rafailovich, M. H.; Sokolov, J. C. Chem. Mater. 2007, 19, 2065-2070. https://doi.org/10.1021/cm0623209
  28. Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. J. Am. Chem. Soc. 2007, 129, 3665-3675. https://doi.org/10.1021/ja0688023
  29. Huang, X.; Zheng, N. J. Am. Chem. Soc. 2009, 131, 4602-4603. https://doi.org/10.1021/ja9009343
  30. Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y. Adv. Funct. Mater. 2009, 19, 189-200. https://doi.org/10.1002/adfm.200801439
  31. Nguyen, K.; Monteverde, M.; Filoramo, A.; Goux-Capes, L.; Lyonnais, S.; Jegou, P.; Viel, P.; Goffman, M.; Bourgoin, J. Adv. Mater. 2008, 20, 1099-1104. https://doi.org/10.1002/adma.200701803
  32. Teng, X.; Han, W. Q.; Ku, W.; Hücker, M. Angew. Chem. Int. Ed. 2008, 47, 2055-2058. https://doi.org/10.1002/anie.200704707
  33. Ranjan, N.; Vinzelberg, H.; Mertig, M. Small 2006, 2, 1490-1496. https://doi.org/10.1002/smll.200600350
  34. Tian, N.; Zhou, Z.; Sun, S. Chem. Commun. 2009, 1502-1504.
  35. Yoo, Y.; Seo, K.; Han, S.; Varadwaj, K. S. K.; Kim, H.; Ryu, J.; Lee, H.; Ahn, J.; Ihee, H.; Kim, B. Nano Lett. 2010, 10, 432-438. https://doi.org/10.1021/nl903002x
  36. Roder, H.; Hahn, E.; Brune, H.; Bucher, J. P.; Kern, K. Nature 1993, 366, 141-143. https://doi.org/10.1038/366141a0
  37. Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollar, J. Surf. Sci. 1998, 411, 186-202. https://doi.org/10.1016/S0039-6028(98)00363-X
  38. Ward, J. W. J. Chem. Phys. 1967, 47, 4030-4034. https://doi.org/10.1063/1.1701571
  39. Yoo, Y.; Yoon, I.; Lee, H.; Ahn, J.; Ahn, J. P.; Kim, B. ACS Nano 2010, 4, 2919-2927. https://doi.org/10.1021/nn100151c
  40. Yoo, Y.; Han, S.; Kim, M.; Kang, T.; In, J.; Kim, B. Chem. Asian J. 2011, 6, 2500-2505. https://doi.org/10.1002/asia.201100028
  41. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Nature 2004, 430, 61-65. https://doi.org/10.1038/nature02674
  42. Schmitt, A. L.; Bierman, M. J.; Schmeisser, D.; Himpsel, F. J.; Jin, S. Nano Lett. 2006, 6, 1617-1621. https://doi.org/10.1021/nl060550g
  43. Schmitt, A. L.; Zhu, L.; Schmeiâer, D.; Himpsel, F. J.; Jin, S. J. Phys. Chem. B 2006, 110, 18142-18146. https://doi.org/10.1021/jp064646a
  44. Higgins, J. M.; Schmitt, A. L.; Guzei, I. A.; Jin, S. J. Am. Chem. Soc. 2008, 130, 16086-16094. https://doi.org/10.1021/ja8065122
  45. Seo, K.; Yoon, H.; Ryu, S. W.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Choi, Y. K.; Kim, B. ACS Nano 2010, 4, 2569-2576. https://doi.org/10.1021/nn901653q
  46. Seo, K.; Varadwaj, K. S. K.; Cha, D.; In, J.; Kim, J.; Park, J.; Kim, B. J. Phys. Chem. C 2007, 111, 9072-9076. https://doi.org/10.1021/jp071707b
  47. In, J.; Varadwaj, K. S. K.; Seo, K.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B. J. Phys. Chem. C 2008, 112, 4748-4752. https://doi.org/10.1021/jp7105346
  48. Seo, K.; Lee, S.; Yoon, H.; In, J.; Varadwaj, K. S. K.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B. ACS Nano 2009, 3, 1145-1150. https://doi.org/10.1021/nn900191g
  49. Varadwaj, K. S. K.; Seo, K.; In, J.; Mohanty, P.; Park, J.; Kim, B. J. Am. Chem. Soc. 2007, 129, 8594-8599. https://doi.org/10.1021/ja071439v
  50. In, J.; Seo, K.; Lee, S.; Yoon, H.; Park, J.; Lee, G.; Kim, B. J. Phys. Chem. C 2009, 113, 12996-13001. https://doi.org/10.1021/jp810383q
  51. Seo, K.; Varadwaj, K. S. K.; Mohanty, P.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B. Nano Lett. 2007, 7, 1240-1245. https://doi.org/10.1021/nl070113h
  52. Ouyang, L.; Thrall, E. S.; Deshmukh, M. M.; Park, H. Adv. Mater. 2006, 18, 1437-1440. https://doi.org/10.1002/adma.200502721
  53. Seo, K.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Churchill, D. G.; Kim, B. J. Phys. Chem. C 2009, 113, 6902-6905. https://doi.org/10.1021/jp902010j
  54. Doiron-Leyraud, N.; Walker, I. R.; Taillefer, L.; Steiner, M. J.; Julian, S. R.; Lonzarich, G. G. Nature 2003, 425, 595-599. https://doi.org/10.1038/nature01968
  55. Muhlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Boni, P. Science 2009, 323, 915-919. https://doi.org/10.1126/science.1166767
  56. Arora, P.; Chattopadhyay, M. K.; Roy, S. B. Appl. Phys. Lett. 2007, 91, 062508/1-062508/3.
  57. Higgins, J. M.; Ding, R.; DeGrave, J. P.; Jin, S. Nano Lett. 2010, 10, 1605-1610. https://doi.org/10.1021/nl904042m
  58. Manyala, N.; Sidis, Y.; DiTusa, J. F.; Aeppli, G.; Young, D. P.; Fisk, Z. Nature 2000, 404, 581-584. https://doi.org/10.1038/35007030
  59. Guevara, J.; Vildosola, V.; Milano, J.; Llois, A. M. Phys. Rev. B 2004, 69, 184422/1-184422/6.
  60. Uchida, M.; Onose, Y.; Matsui, Y.; Tokura, Y. Science 2006, 311, 359-361. https://doi.org/10.1126/science.1120639
  61. Yoon, H.; Lee, A. T.; Choi, E.; Seo, K.; Bagkar, N.; Cho, J.; Jo, Y.; Chang, K. J.; Kim, B. J. Am. Chem. Soc. 2010, 132, 17447-17451. https://doi.org/10.1021/ja104189p
  62. Zeng, C.; Kent, P. R. C.; Varela, M.; Eisenbach, M.; Stocks, G. M.; Torija, M.; Shen, J.; Weitering, H. H. Phys. Rev. Lett. 2006, 96, 127201/1-127201/4.
  63. Yoon, H.; Seo, K.; Bagkar, N.; In, J.; Park, J.; Kim, J.; Kim, B. Adv. Mater. 2009, 21, 4979-4982. https://doi.org/10.1002/adma.200901972
  64. Yoon, H.; Kang, T.; Lee, J. M.; Kim, S.-I.; Seo, K.; Kim, J.; Park, W. I.; Kim, B. J. Phys. Chem. Lett. 2011, 2, 956-960. https://doi.org/10.1021/jz2002925
  65. Lensch-Falk, J. L.; Hemesath, E. R.; Lopez, F. J.; Lauhon, L. J. J. Am. Chem. Soc. 2007, 129, 10670-10671. https://doi.org/10.1021/ja074276j
  66. Lensch-Falk, J. L.; Hemesath, E. R.; Lauhon, L. J. Nano Lett. 2008, 8, 2669-2673. https://doi.org/10.1021/nl800933s
  67. Liu, Z.; Elbert, D.; Chien, C. L.; Searson, P. C. Nano Lett. 2008, 8, 2166-2170. https://doi.org/10.1021/nl080492u
  68. Kanematsu, K. J. Phys. Soc. Japan 1965, 20, 36-43. https://doi.org/10.1143/JPSJ.20.36

Cited by

  1. The selective synthesis of nickel germanide nanowires and nickel germanide seeded germanium nanowires within a solvent vapour growth system vol.19, pp.15, 2017, https://doi.org/10.1039/C7CE00268H
  2. films and unique transport properties vol.8, pp.6, 2018, https://doi.org/10.1063/1.5030786