양액과 SCB액비 처리에 미량요소 첨가가 방울토마토의 미네랄 함량과 생육에 미치는 영향

Effect of the Mixed Treatment of Electrolyzed Micronutrients with Nutrient Solution and SCB Slurry on Mineral Content and Growth of Cherry Tomatoes (Lycopersicon esculentum)

  • 류종원 (상지대학교 유기농생태학과)
  • 투고 : 2012.08.27
  • 심사 : 2012.09.20
  • 발행 : 2012.09.28

초록

식물미네랄(phyto-minerals) 함량을 높인 미네랄강화 농작물(biofortification foods)을 개발하기 위하여 전기분해를 이용하여 10종(Co, Fe, Mg, Mn, Sr, Zn, Li, Sn, V, Ti, Se, S)의 미량요소를 함유하는 복합미네랄액을 조제하였다. 양액과 SCB 액비에 복합미량요소액을 방울토마토 처리한 결과 양액+복합미량요소액 처리구는 Li, Zn, Sr, Se, Ti이 증가되었고, SCB+복합미량요소액 처리구는 Li, Zn, Se, Co, Sr, Ti 함량이 유의성있게 증가하였다. 양액+SCB+복합미량요소액 처리구는 SCB액비, NS액비 처리구보다 Li, Zn, Se, Co, Ti 함량이 유의성 있게 증가하였다. 토마토의 생육과 수량은 양액처리구에서 가장 높았고, 복합 미량요소액 처리로 감소하였다. 토마토의 수량은 표준양액처리구와 비교할때 NS+복합미량요소액 처리구와 SCB+양액+복합 미량요소액 혼합시용구는 각각 97%와 94%의 토마토 과실 수량를 나타내었으나 미량요소 강화효과가 있었으므로 혼합용액을 조제하면 토마토 재배용 양액으로 활용이 가능할 것으로 보인다.

A pot experiment was carried out to examined the effect of electrolyzed micronutrients (Fe, Mn, Zn, Sr, Se, Sn, Co, Ti, and V) solution treatments with nutrient solution and SCB slurry on the mineral content and growth of tomato in cherry tomato (Lycopersicon esculentum). The treatment of nutrient solution (NS)+micronutrients solution (MS) significantly increased the concentrations of Li, Zn, Sr, Se, Ti as compared with that of NS alone in the cherry tomato fruits, and SCB+MS solution treatment significantly increased Li, Zn, Se, Co, Sr, and Ti contents as compared with SCB treatment. The micronutrient contents of MN+SCB+MS treatment were significantly higher in Li, Zn, Se, Co and in Ti than those of SCB and NS treatment, respectively. The growth and yield of cherry tomato fruits was highest with NS treatment. The yield indices of cherry tomato treated with NS+MS treatment and SCB+NS+MS were 97% and 94% of NS treatment. In conclusion, it seems to be possible to produce micronutrient-fortified cherry tomato by the mixed treatment of electrolyzed micronutrients.

키워드

참고문헌

  1. 농촌진흥청. 1991. 농사시험연구조사기준.
  2. 농촌진흥청. 1997. 양액재배기술 표준영농교본.
  3. 류종원․서운갑. 2009. 퇴비단 여과액비와 농축액비를 이용한 양액재배가 토마토(Lycopersicum esculentum Mill.)의 생육 및 수량에 미치는 영향. 한국유기농업학회지 17(3): 357-370.
  4. 최종명․박종윤. 2007. 인산시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향. 한국생물환경조절학회 16(4): 358-364.
  5. 홍순달․김기인․박효택․김성수. 2001. 시설재배 토마토 잎의 엽록소 측정치와 토양질 소공급능력의 상호관계. 한국토양비료학회지 34(2): 85-91.
  6. Alloway, B. J. 2004. Zinc in Soils and Crop Nutrition. International Zinc Association, Brussels, Belgium.
  7. Bakkaus E., B. Gouget, J. P. Gallien, H. Khodja, F. Carrot, J. L. Morel, and R. Collins. 2005. Concentration and distribution of cobalt in higher plants: The use of micro-PIXE spectroscopy. Nuclear Physics Research B 231: 350-356.
  8. Bergner, Paul. 1997. The Healing Power of Minerals, Special Nutrients, and Trace Elements. Prima Publishing, Rocklin, CA. 312p.
  9. Blair, G. J., H. Miller, and W. A. Mitchell. 1970. Nitrate and ammonium as sources of nitrogen for corn and their influence on the uptake of other ions. Agron. J. 62: 530-532. https://doi.org/10.2134/agronj1970.00021962006200040031x
  10. Bouis, H. E. 1996. Enrichment of food staples through plant breeding: A new strategy for fighting micronutrient malnutrition. Nutr. Rev., 54: 131-137.
  11. Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification. Plant Soil. 302: 1-17. https://doi.org/10.1007/s11104-007-9466-3
  12. Gericke, W. F. 1929. Aquaculture a menas of crop production. Amer. J. Botany. 16: 862.
  13. Hayati F. and D. Aksu. 2011. Determination of Vanadium in Food Samples by Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectroscopy. Food analytical methods. 5(3): 359-365.
  14. Kennedy E. and R. Powell. 1997. Changing eating patterns of American children: a view from 1996. J Am Coll Nutr 16: 524-529.
  15. Krutilina, V. S., N. A. Goncharova, N. P. Panov, and W. Letchamo. 1999. Effect of zeolite and phosphogypsum on yield, plant uptake, and content of strontium in soil. Communications in Soil Science and Plant Analysis. 30(3-4). 483-495. https://doi.org/10.1080/00103629909370219
  16. Linder MC. 1991. Nutritional Biochemistry and Metabolism: With Clinical Applications, 2nd ed. New York. Elsevier.
  17. Lovkova, M. Ya., S. M. Sokolova, and G. N. Buzuk. 2007. Lithium-concentrating plant species and their pharmaceutical usage. Doklady Biological Sciences. 412(1): 64-66.
  18. Mertz, W., ed. 1986. Trace Elements in Human and Animal Nutrition, Fifth Edition, Academic press, New York, N.Y.
  19. Nadia G. and H. Kandil. 2010. Influence of cobalt on phosphorus uptake, growth and yield of tomato. Agriculture and Biology Journal of North America. 1(5): 1069-1075. https://doi.org/10.5251/abjna.2010.1.5.1069.1075
  20. Nestel, P., H. E. Bouis, J. V. Meenakshi, and W. Pfeiffer, 2006. Biofortification of staple food crops. J. Nutr., 136: 1064-1067. https://doi.org/10.1093/jn/136.4.1064
  21. Ortiz-Monasterio, J. I., N. Palacios-Rojas, E. Meng., K. Pixley, R. Trethowan1, and R. J. Peña. 2007. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science. 46(3): 293-307. https://doi.org/10.1016/j.jcs.2007.06.005
  22. Rashid, A. and J. Ryan. 2004. Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: A Review. J. Plant Nutr. 27: 959-975. https://doi.org/10.1081/PLN-120037530
  23. Schauss, A. 1998. Trace Elements and Human Health. 3rd ed. Tacoma: AIBR Press.
  24. Terry, A., M. Zayed., M. P. de Souza, and A. S. Tarun. 2000. Selemium in hihher plants. Annual Review of Plant Physiology and Plant Molecular Biology. 51: 401-432. https://doi.org/10.1146/annurev.arplant.51.1.401