Isolation of Anaerobic Cellulolytic Bacteria from the Rumen of Holstein Dairy Cows to Develop Feed Additives for Ruminants

반추동물용 사료첨가제개발을 위한 홀스타인 젖소의 반추위로부터 분리한 혐기성 섬유소 분해균의 특성연구

  • Choi, Nag-Jin (The Institute of Rare Earth for Biological Application, Department of Animal Science, Chonbuk National University) ;
  • Lee, Gi-Young (Graduate School of Biotechnology, Environmental and Information Technology, Hankyong National University) ;
  • Jeong, Kwang-Hwa (National Institute of Animal Science, RDA) ;
  • Kim, Chang-Hyun (School of Animal Life and Environment Science, Biogas Research Center, Hankyong National University)
  • Received : 2012.08.21
  • Accepted : 2012.09.15
  • Published : 2012.09.28

Abstract

In order to develop a high cellulolytic direct-fed microorganism (DFM) for ruminant productivity improvement, this study isolated cellulolytic bacteria from the rumen of Holstein dairy cows, and compared their cellulolytic abilities via DM degradability, gas production and cellulolytic enzyme activities. Twenty six bacteria were isolated from colonies grown in Dehority's artificial (DA) medium with 2% agar and cultured in DA medium containing filter paper at $39^{\circ}C$ for 24h. 16s rDNA gene sequencing of four strains from isolated bacteria showed that H8, H20 and H25 strains identified as Ruminococcus flavefaciens, and H23 strain identified as Fibrobacter succinogenes. H20 strain had higher degradability of filter paper compared with others during the incubation. H8 (R. flavefaciens), H20 (R. flavefaciens), H23 (F. succinogenes), H25 (R. flavefaciens) and RF (R. flavefaciens sijpesteijn, ATCC 19208) were cultured in DA medium with filter paper as a single carbon source for 0, 1, 2, 3, 4 and 6 days without shaking at $39^{\circ}C$, respectively. Dry matter degradability rates of H20, H23 and H25 were relatively higher than those of H8 and RF since 2 d incubation. The cumulative gas production of isolated cellulolytic bacteria increased with incubation time. At every incubation time, the gas production was highest in H20 strain. The activities of carboxymethylcellulase (CMCase) and Avicelase in the culture supernatant were significantly higher in H20 strain compared with others at every incubation time (p<0.05). Therefore, although further researches are required, the present results suggest that H20 strain could be a candidate of DFM in animal feed due to high cellulolytic ability.

Keywords

References

  1. Beharka, A. A. and T. G. Nagaraja. 1993. Effect of Aspergillus oryzae fermentation extract ($Amaferm^{(R}}$ ) on in vitro fiber degradation . J. Dairy Sci. 76: 812-818. https://doi.org/10.3168/jds.S0022-0302(93)77405-6
  2. Bryant, M. P. 1973. Nutritional requirements of predominant rumen cellulolytic bacteria. Fed. Proc. 32: 1809.
  3. Bryant, M. P. and L. A. Burkey. 1953a. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci. 36: 205-217. https://doi.org/10.3168/jds.S0022-0302(53)91482-9
  4. Bryant, M. P. and L. A. Burkey. 1953b. Numbers and some predominant groups of bacteria in the rumen of cows fed different rations. J. Dairy Sci. 36: 218-224. https://doi.org/10.3168/jds.S0022-0302(53)91483-0
  5. Beuvink, J. M. W. and S. F. Spoelstra. 1992. Interactions between substrate, fermentation end-products, buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl. Microbiol. Biotechnol. 37: 505-509.
  6. Callaway, T. R. and S. A. Martin, 1996. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim. Sci. 74: 1982- 1989. https://doi.org/10.2527/1996.7481982x
  7. Dehority, B. A. 2003. Rumen microbiology. Nottingham University Press, Nottingham, UK.
  8. Dehority, B. A. 1963. Isolation and characterization of several cellulolytic bacteria from in vitro rumen fermentations. J. Dairy Sci. 46: 217-222. https://doi.org/10.3168/jds.S0022-0302(63)89009-8
  9. Fedorak, P. M. and S. E. Hrwdey. 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ. Technol. Lett. 4: 425-432. https://doi.org/10.1080/09593338309384228
  10. Forsberg, C. W., T. J. Beveridge, and A. Hellstorm. 1981. Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment. Appl. Environ. Microbiol. 42: 886-896.
  11. Greve, L. C., J. M. Labavitch, and R. E. Hungate. 1984. $\alpha$-L-arabinofuranosidase from Ruminococcus albus 8: Purification and possible role in hydrolysis of alfalfa cell wall. Appl. Environ. microbiol. 47: 1135-1140.
  12. Halliwell, G. and M. P. Bryant. 1963. The cellulolytic activity of pure strains of bacteria from the rumen of cattle. J. Gen. Microbiol. 32: 441-448. https://doi.org/10.1099/00221287-32-3-441
  13. Huang, L. and C. W. Forsberg. 1990. Cellulose digestion and cellulose regulation and distribution in Fiberobacter succinogenes subsp. succinogenes S85. Appl. Environ. Microbiol. 56: 1221-1228.
  14. Hungate, R. E. 1950. The anaerobic mesophyllic cellulolytic bacteria. Bacteriol. Rev. 14: 1-49.
  15. Hungate, R. E. 1957. Microorganism in the rumen of cattle fed a constant ration. Can. J. Microbiol. 3: 289-311. https://doi.org/10.1139/m57-034
  16. Hungate, R. E. 1963. Polysaccharide storage and growth efficiency in Ruminococcus albus. J. Bacteriol. 86: 848-854.
  17. Kohchi, C. and A. Tohe. 1986. Cloning of Candida pelliculosa $\beta$-glucosidase gene and its expression in S. cerevisiae. Mol. Gen. Genet. 203: 89-94. https://doi.org/10.1007/BF00330388
  18. Krehbiel, C. R., S. R. Rust, G. Zhang and S. E. Gilliland. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81(E. Suppl.2): E120-E132.
  19. Mandels, M., R. Andreotti, and C. Roche. 1976. Measurement of saccharifying cellulose. In: Enzymatic conversion of cellulosic materials: technology and applications, symposium, proceedings, September 8-10 (Ed. L. Gade, M. Mandels, E. Reese and L. Spano). John Wiley & Sons. Natick, Massachusetts. Biotechnol Bioeng Symp. 3: 21-33.
  20. Martin, S. A. and D. J. Nesbet. 1992. Effect of direct-fed microbials on rumen microbial fermentation. J. Dairy Sci. 75: 1736-1744. https://doi.org/10.3168/jds.S0022-0302(92)77932-6
  21. McDermid, K., C. R. Mackenzie and C. W. Forsberg. 1990. Esterase activities of Fibrobacter succinogenes subsp. succinogenes S85. Appl. Environ. Microbiol. 56: 127-132.
  22. Miller, G. L., R. Blum, W. E. Glennon and A. L. Burton. 1960. Measurement of carboxylmethylcellulase activity. Anal. Biochem. 1: 127-132. https://doi.org/10.1016/0003-2697(60)90004-X
  23. Pettipher, G. L. and M. J. Latham. 1979. Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavefaciens in batch and continuous culture. J. Gen. Microbiol. 110: 29-38. https://doi.org/10.1099/00221287-110-1-29
  24. Rymer, C. and D. I. Givens. 2002. Relationships between patterns of rumen fermentation measured in sheep and in situ degradability and the in vitro gas production profile of the diet. Anim. Feed Sci. Technol. 101: 31-44. https://doi.org/10.1016/S0377-8401(02)00215-8
  25. SAS. 1996. Statistical analysis systems. SAS/STAS User's Guide. Release 8. SAS Institute, Inc., Cary. NC. USA.
  26. Sijpesteijn, A. K. 1951. On Ruminococcus flavefaciens a cellulose decomposing bacterium from the rumen of sheep and cattle. J. Gen. Microbiol. 5: 869-879. https://doi.org/10.1099/00221287-5-5-869
  27. Silva, A. T., R. J. Wallace, and E. R. $\phi$rskov. 1987. Use of particle-bound microbial enzyme activity to predict the rate and extent of fibre degradation in the rumen. Br. J. Nutr. 57: 407-415. https://doi.org/10.1079/BJN19870048
  28. Sullivan, H. M. and S. A. Martin. 1999. Effects of a Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 82: 2011-2016. https://doi.org/10.3168/jds.S0022-0302(99)75438-X
  29. Teather, R. M. 1982. Maintenance of laboratory strains of obligately anaerobic rumen bacteria. Appl. Environ. Microbiol. 44: 499-501.
  30. Theodorou, M. K., D. R. Daivies, B. B. Nielsen, M. I. G. Lawrence, and A. P. J. Trinci. 1998. Principles of techniques that rely on gas measurement in ruminant nutrition. In: In vitro Techniques for Measuring Nutrient Supply to Ruminants (Ed. E. R. Deaville, E. Owen, A. T. Adesogan, C. Remyer, J. A. Huntington and T. L. J. Lawrence). Occasional publication, No. 22. British Society of Animal Science, UK. pp. 55-63.
  31. Theodorou, M. K., D. R. David, B. B. Nielsen, M. I. G. Lawrence, and A. P. J. Trinci. 1995. Determination of growth of anaerobic fungi on soluble and cellulosic substrates using a pressure transducer. Microbiolgy. 141: 671-678.
  32. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48: 185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  33. Windham, W. R. and D. E. Akin. 1984. Rumen fungi and forage fiber degradation. Appl. Environ. Microbial. 48: 473-476.