DOI QR코드

DOI QR Code

Study on the Oxidation and Dissolution Characteristics of Biogenic Mackinawite

미생물 기원 맥키나와이트의 산화 및 용해 특성 연구

  • 이승엽 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 백민훈 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 정종태 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2012.09.11
  • Accepted : 2012.09.25
  • Published : 2012.09.28

Abstract

We observed characteristic oxidation and dissolution phenomena induced by dissolved oxygen for mackinawite that is produced via sulfate-reducing bacteria (SRB) living in anaerobic environments such as soils and groundwater. We tried to recognize the role of the sulfide minerals that usually coexist with some stabilized radionuclides (e.g., reduced uranium), which can be reoxidized and redissolved by an oxygen-rich groundwater invaded into a contaminated area. The mackinawite produced by 'Desulfovibrio desulfuricans', a sulfate-reducing bacterium, was conducted to be dissolved for 2 weeks by some oxidants such as 'hydrogen peroxide' and 'sodium nitrite'. Although mineralogical oxidation and dissolution characteristics were different from each other according to the oxidants, the initially oxidized solution was early stabilized through the oxygen consumption by ${\mu}m$-sized sulfide particles and the resultant increase of sulfate in solution. From these results, we can anticipate that the large amount of sulfide minerals generated by SRB can not only repress the anoxic environment to be disturbed by the consumption of oxygen in groundwater, but also contribute to stabilize the reduced/precipitated radionuclides as a buffer material for a long time.

토양 및 지하수 등의 혐기성환경에 서식하는 황산염환원박테리아의 활동으로 생성되는 맥키나와이트가 용존산소에 의해 산화 및 용해되는 특성을 관찰하였다. 오염지역에 산화지하수 유입에 의한 용존산소량 증가로 인해 안정화된 핵종들(예: 환원우라늄)이 산화 및 용해되는 상황에서 일반적으로 같이 공존하는 황화광물의 역할을 알아보고자 하였다. '디설퍼비브리오 디설프리칸스(Desulfovibrio desulfuricans)'라는 황산염환원박테리아가 만든 맥키나와이트를 '과산화수소수'와 '아질산나트륨'으로 산화시키면서 발생되는 광물 용해 현상을 약 2주 동안 관찰하였다. 산화제의 종류에 따라 시료의 광물학적 산화 및 용해 반응 특성은 달랐으나, ${\mu}m$ 크기의 황화광물 입자들에 의한 용존산소의 소모와 그에 따른 황산염 농도의 증가로 인해 산화수가 초기에 안정화되었다. 이와 같은 결과로부터 알 수 있는 사실은, 황산염환원미생물에 의해 다량 만들어지는 황화광물이 지하수의 산소를 소모시켜 환원 환경의 교란을 예방할 뿐만 아니라 버퍼물질로써 환원/침전된 핵종들의 장기 안정화에 상당한 기여를 할 것으로 예상된다.

Keywords

References

  1. Abdelouas, A., Lutze, W., and Nuttall, H.E. (1999) Oxidative dissolution of uraninite precipitated on Navajo Sandstone. J. Contamin. Hydrol., 36, 353-375. https://doi.org/10.1016/S0169-7722(98)00151-X
  2. Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., and Tebo, B.M. (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements, 4, 407-412. https://doi.org/10.2113/gselements.4.6.407
  3. Cao, J., Zhang, G., Mao, Z., Fang, Z., and Yang, C. (2009) Precipitation of valuable metals from bioleaching solution by biogenic sulfides. Miner. Eng., 22, 289-295. https://doi.org/10.1016/j.mineng.2008.08.006
  4. Gramp, J.P., Bigham, J.M., Jones, F.S., and Tuovinen, O.H. (2010) Formation of Fe-sulfides in cultures of sulfate-reducing bacteria. J. Hazard. Mater., 175, 1062-1067. https://doi.org/10.1016/j.jhazmat.2009.10.119
  5. Kaksonen, A.H., Riekkola-Vanhanen, M.L., and Puhakka, J.A. (2003) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res., 37, 255-266. https://doi.org/10.1016/S0043-1354(02)00267-1
  6. Kwon, K.D., Refson, K., Bone, S., Qiao, R., Yang, W.L., Liu, Z., and Sposito, G. (2011) Magnetic ordering in tetragonal FeS: evidence for strong itinerant spin fluctuations. Phys. Rev. B, 83, 064402. https://doi.org/10.1103/PhysRevB.83.064402
  7. Lee, S.Y., Oh, J.M., Baik, M.H., and Lee, Y.J. (2011a) Change of oxidation/reduction potential of solution by metal-reducing bacteria and roles of biosynthesized mackinawite. J. Miner. Soc. Korea, 24, 279-287. https://doi.org/10.9727/jmsk.2011.24.4.279
  8. Lee, S.Y., Oh, J.M., and Baik, M.H. (2011b) Uranium removal by D. baculatum and effects of trace metals. J. Miner. Soc. Korea, 24, 83-90. https://doi.org/10.9727/jmsk.2011.24.2.083
  9. Lloyd, J.R. and Renshaw, J.C. (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Current Opinion Biotech., 16, 254-260. https://doi.org/10.1016/j.copbio.2005.04.012
  10. Neculita, C.M., Zagury, G.J., and Bussiere, B. (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. J. Environ. Qual., 36, 1-16. https://doi.org/10.2134/jeq2006.0066
  11. Ohfuji, H. and Rickard, D. (2006) High resolution transmission electron microscopic study of synthetic nanocrystalline mackinawite. Earth Planet. Sci. Lett., 241, 227-233. https://doi.org/10.1016/j.epsl.2005.10.006
  12. Oh, J.M., Lee, S.Y., Baik, M.H., and Roh, Y. (2010) Characterization of uranium removal and mineralization by bacteria in deep underground, Korea Atomic Energy Research Institute (KAERI). J. Miner. Soc. Korea, 23, 107-115.
  13. Raamamoorthy, S., Piotrowski, J.S., Langner, H.W., Holben, W.E., Morra, M.J., and Rosenzweig, F.R. (2006) Ecology of sulfate-reducing bacteria in an iron-dominated, mining-impacted freshwater sediment. J. Environ. Qual., 38, 675-684.
  14. Senko, J.M., Mohamed, Y., Dewers, T.A., and Krumholz, L.R. (2005) Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation. Environ. Sci. Technol., 39, 2529-2536. https://doi.org/10.1021/es048906i
  15. Senko, J.M., Kelly, S.D., Dohnalkova, A.C., McDonough, J.T., Kemner, K.M., and Burgos, W.D. (2007) The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV). Geochim. Cosmochim. Acta, 71, 4644-4654. https://doi.org/10.1016/j.gca.2007.07.021
  16. Ulrich, K.U., Singh, A., Schofield, E.J., Bargar, J.R., Veeramani, H., Sharp, J.O., Bernier-Latmani, R., and Giammar, D.E. (2008) Dissolution of biogenic and synthetic $UO_2$ under varied reducing conditions. Environ. Sci. Technol., 42, 5600-5606. https://doi.org/10.1021/es800647u
  17. Ulrich, K.U., Ilton, E.S., Veeramani, H., Sharp, J.O. Bernier-Latmani, R. Schofield, E.J., Bargar, J.R., and Giammar, D.E. (2009) Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate. Geochim. Cosmochim. Acta, 73, 6065-6083. https://doi.org/10.1016/j.gca.2009.07.012

Cited by

  1. Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria vol.47, pp.1, 2014, https://doi.org/10.9719/EEG.2014.47.1.61
  2. Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium vol.26, pp.4, 2013, https://doi.org/10.9727/jmsk.2013.26.4.219