References
- Choi, J. M. 2011. A Study on Combustion Characteristics of Fire Retardant Treated Pinus Densiflora and Pinus Koraiensis. Mokchae Konghak. 39(3): 244∼251. https://doi.org/10.5658/WOOD.2011.39.3.244
- Hardy, M. L. 1999. Regulatory status and environmental Properties of brominated flame retardants undergoing risk assessment in the EU: DBDPO, OBDPO, PeBDPO and HBCD, polymer Degradation stability. 64: 545-556. https://doi.org/10.1016/S0141-3910(98)00141-4
- Joung, Y. J. 2010. Fire performance of the ammonium treated zelkova tree. J. of the Korean Oil Chemists' Soc. 27(4): 399-406.
- Korea standard association. 2008. KS F ISO 5660-1, Combustion test-Heat release, smoke, mass loss rate-part 1. Heat release rate (Cone calorimeter methods).
- Lee, J. W. 2008. Burining Behavior of Flooring Materials in the Cone Calorimeter and Evaluatin of Toxic Smoke. Mokchae Konghak 36(1): 45-53.
- Lee, K. W., K. E. Kim. 2003. Fire characteristics of plastic insulating materials from cone calorimeter Test. T. of Korean Institute of Fire Sci. & Eng. 17(1): 76-83.
- Mikkola, E. 1991. Charring of wood based materials, Proceedings of the third international symposium. Elsevier Applied Science. London p547.
- Ondrej, G., H. Elean, B. Olga, and L. Peter, 1999. Flame retardant treated plywood. polymer Degradation and Stability. 64: 529-533. https://doi.org/10.1016/S0141-3910(98)00152-9
- Park, H. J. 2007. A study on the building rate of fire retardant treated wood. Journal of the KOSOS. Vol 22(6): 46-54
- Park, S. Y., D. H. Kim, and H. S. Kim. 2006. The experimental study for the combustion property of sandwich panels using ISO 5660 Cone Calorimeter. T. of Korean Institute of Fire Sci. & Eng. 20(4): 33-41.
- Son, D. W., M. R. Kang., J. I. Kim., S. B. Pakr, and D. h. Lee. 2012. Performance and antisapstain efficacy of fire retardant treated wood. Korea Furniture Society, Spring Conference. 32-34.
- Toshiro H., U. Saburou, and T. Hironori. 2003. Evaluation of fire-retardant wood treated with polyphosphateic carbamante using a cone calorimeter. Forest Prod. J. 53(6): 81-85.
Cited by
- Enhancing the flame-retardant performance of wood-based materials using carbon-based materials vol.123, pp.3, 2016, https://doi.org/10.1007/s10973-015-4553-9
- A Study Scope of Optimal Heating and Drying Process of Timber Heated by Microwave vol.18, pp.4, 2014, https://doi.org/10.11112/jksmi.2014.18.4.126
- Synergistic Effect of 3A Zeolite on The Flame Retardant Properties of Poplar Plywood Treated with APP vol.43, pp.2, 2015, https://doi.org/10.5658/WOOD.2015.43.2.258
- Hygroscopic Property, Leaching Resistance and Metal Corrosive Efficacy of Wood Treated with Fire Retardants vol.42, pp.2, 2014, https://doi.org/10.5658/WOOD.2014.42.2.157
- Flame Retardant and Weather Proof Characteristic of Dan-Chung Treated Wooden by Flame Retardant Performance vol.13, pp.2, 2013, https://doi.org/10.5345/JKIBC.2013.13.2.122
- Combustion Characteristics of Hinoki Cypress Louver after Pressure Impregnation with Boric Acid, Borax and Ammonium Phosphate vol.29, pp.6, 2015, https://doi.org/10.7731/KIFSE.2015.29.6.001
- Decay Resistance and Anti-mold Efficacy of Wood Treated with Fire Retardants vol.41, pp.6, 2013, https://doi.org/10.5658/WOOD.2013.41.6.559