DOI QR코드

DOI QR Code

Ecophysiological Responses of Northern Birch Forests to the Changing Atmospheric CO2 and O3 Concentrations

  • Received : 2012.02.06
  • Accepted : 2012.08.15
  • Published : 2012.09.30

Abstract

The effects on birch (Betula spp.) of elevated carbon dioxide ($CO_2$) and ozone ($O_3$), which are both increasing in the troposphere, are surveyed in detail based on the literature. Birches establish themselves in the open field after disturbances, and then become dominant trees in temperate or boreal forests. Ecophysiological approaches include the measurement of photosynthesis, biomass, growth, and survival of seedlings and trees. Elevated $CO_2$ levels give rise to a net enhancement of the growth of birch trees, whereas high $O_3$ generally reduces growth. Although the effects of the two are opposed, there is also an interactive effect. Basic physiological responses of the single genus Betula to $CO_2$ and $O_3$ are set out, and some data are summarized regarding ecological interactions between trees, or between trees and other organisms.

Keywords

References

  1. Agrell, J., Kopper, B., McDonald, E.P., Lindroth, R.L. (2005) $CO_{2}$ and $O_{3}$ effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Global Change Biology 11, 588-599. https://doi.org/10.1111/j.1365-2486.2005.00924.x
  2. Akimoto, H. (2003) Global air quality and pollution. Science 302, 1716-1719. https://doi.org/10.1126/science.1092666
  3. Alexeyev, V.A., Birdsey, R.A., Stakanov, V.D., Korotkov, I.A. (2000) Carbon storage in the Asian boreal forests of Russia. In Fire, Climate Change, and Carbon Cycling of the Boreal Forest (Kasischke, E.S. and Stocks, B.J. Eds), Ecological Studies 138, Springer, New York, pp. 239-257.
  4. Berntson, G.M., Wayne, P.M., Bazzaz, F.A. (1997) Belowground architectural and mycorrhizal responses to elevated $CO_{2}$ in Betula alleghaniensis populations. Functional Ecology 11, 684-695. https://doi.org/10.1046/j.1365-2435.1997.00141.x
  5. Cao, B., Dang, Q.L., Zhang, S. (2007) Relationship between photosynthesis and leaf nitrogen concentration in ambient and elevated [$CO_{2}$] in white birch seedlings. Tree Physiology 27, 891-899. https://doi.org/10.1093/treephys/27.6.891
  6. Castovsky, S., Bazzaz, F.A. (1999) Elevated $CO_{2}$ influences the responses of two birch species to soil moisture: implications for forest community structure. Global Change Biology 5, 507-518. https://doi.org/10.1046/j.1365-2486.1999.00247.x
  7. Chapin, F.S., Hollingsworth, T., Murray, D.F., Viereck, L.A., Walker, M.D. (2006) Floristic diversity and vegetation distribution in the Alaskan Boreal Forest. In Alaska's Changing Boreal Forest (Chapin, F.S., Oswood, M.W., Van Cleve, K., Viereck, L.A. and Verbyla, D.L. Eds), Oxford Univ Press, New York, pp. 81-99.
  8. Darbah, J.N.T., Kubiske, M.E., Nelson, N., Oksanen, E., Vapaavuori, E., Karnosky, D.F. (2008) Effects of decadal exposure to interacting elevated $CO_{2}$ and/or $O_{3}$ on paper birch (Betula papyrifera) reproduction. Environmental Pollution 155, 446-452. https://doi.org/10.1016/j.envpol.2008.01.033
  9. Eguchi, N., Karatsu, K., Ueda, T., Funada, R., Takagi, K., Hiura, T., Sasa, K., Koike, T. (2008a) Photosynthetic responses of birch and alder saplings grown in a free air $CO_{2}$ enrichment system in northern Japan. Trees 22, 437-447. https://doi.org/10.1007/s00468-007-0204-5
  10. Eguchi, N., Morii, N., Ueda, T., Funada, R., Takagi, K., Hiura, T., Sasa, K., Koike, T. (2008b) Changes in petiole hydraulic properties and leaf water flow in birch and oak saplings in a $CO_{2}$-enriched atmosphere. Tree Physiology 28, 287-295. https://doi.org/10.1093/treephys/28.2.287
  11. Eichelmann, H., Oja, V., Rasulov, B., Padu, E., Bichele, I., Pettai, H., Mols, T., Kasparova, I., Vapaavuori, E., Laisk, A. (2004) Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in $CO_{2}$- and $O_{3}$-enriched atmospheres. Plant, Cell and Environment 27, 479-495. https://doi.org/10.1111/j.1365-3040.2003.01166.x
  12. Emberson, L.D., Büker, P., Ashmore, M.R. (2007) Assessing the risk caused by ground level ozone to European forest trees: a case study in pine, beech, and oak across different climate regions. Environmental Pollution 147, 454-466. https://doi.org/10.1016/j.envpol.2006.10.026
  13. Erdmann, G.G. (1990) Yellow birch. Betula alleghaniensis Britton. In Silvics of North America, vol.2, Hardwoods (Burns, R.M. and Honkala, B.H. Eds), USDA Agriculture Handbook 654, http://www.na.fs.fed.us/ pubs/silvics_manual/volume_2/betula/alleganiensis%20. htm, retrieved on 10th Jan. 2012.
  14. FFPRI (2004) The Handbook of Wood Industry. (4th Ed.), Maruzen, Tokyo, pp. 192-193. (In Japanese)
  15. Fowler, D., Pilegaard, K., Sutton, M.A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J.K., Granier, C., Neftel, A., Isaksen, I.S.A., Laj, P., Maione, M., Monks, P.S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink- Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J.P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T.N., Ro-Poulsen, H., Cellier, P., Cape, J.N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P.I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M.W., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M.C., de Leeuw, G., Flossman, A., Chaumerliac, N., Erisman, J.W. (2009) Atmospheric composition change: ecosystems-atmosphere interaction. Atmospheric Environment 43, 5193-5267. https://doi.org/10.1016/j.atmosenv.2009.07.068
  16. Govaerts, R., Frodin, D. (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae, and Ticodendraceae). The Royal Botanic Gardens.
  17. Grelen, H.E. (1990) River birch. Betula nigra L. In Silvics of North America, vol.2, Hardwoods (Burns, R.M. and Honkala, B.H. Eds), USDA Agriculture Handbook 654, http://www.na.fs.fed.us/pubs/silvics_manual/ volume_2/betula/nigra.htm, retrieved on 10th Jan. 2012.
  18. Hokkaido Prefecture (2011) Forestry statistics of Hokkaido in the fiscal year 2010. http://www.pref.hokkaido. lg.jp/sr/sum/kcs/rin-toukei/22rtk.htm, retrieved on 10th Jan. 2012. (In Japanese)
  19. Holmes, W.E., Zak, D.R., Pregitzer, K.S., King, J.S. (2003) Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated $CO_{2}$ and $O_{3}$. Global Change Biology 9, 1743-1750. https://doi.org/10.1046/j.1365-2486.2003.00705.x
  20. Hoshika, Y., Hajima, T., Shimizu, Y., Takigawa, M., Omasa, K. (2011a) Estimation of stomatal ozone uptake of deciduous trees in East Asia. Annals of Forest Science 68, 607-616. https://doi.org/10.1007/s13595-011-0051-9
  21. Hoshika, Y., Shimizu, Y., Omasa, K. (2011b) A comparison between stomatal ozone uptake and AOT40 of deciduous trees in Japan. iForest 4, 128-135. https://doi.org/10.3832/ifor0573-004
  22. Hynynen, J., Niemistö, P., Viherä-Aarnio, A., Brunner, A., Hein, S. (2010) Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83, 103-119. https://doi.org/10.1093/forestry/cpp035
  23. IPCC (2007) Technical summary. In Climate Change 2007: The Physical Science Basis (Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tingor, M.M.B., Miller, H.L. and Chen, Z. Eds), Cambridge University Press, New York, pp. 19-940.
  24. Jager, H.J., Krupa, S.V. (2009) Hormesis-its relevance in phytotoxicology. In Air Quality and Ecological Impacts (Legge, A.H. Ed), Developments in Environmental Science vol.9, Elsevier, pp. 137-152.
  25. Ji, L.Z., An, L.L., Wang, X.W. (2011) Growth responses of gypsy moth larvae to elevated $CO_{2}$: the influence of methods of insect rearing. Insect Science 18, 409-418. https://doi.org/10.1111/j.1744-7917.2011.01419.x
  26. Juurola, E. (2003) Biochemical acclimation patterns of Betula pendula and Pinus sylvestris seedlings to elevated carbon dioxide concentrations. Tree Physiology 23, 85-95. https://doi.org/10.1093/treephys/23.2.85
  27. Karlsson, P.E., Braun, S., Broadmeadow, M., Elcira, S., Emberson, L., Gimeno, B.S., Le Thiec, D., Novak, K., Oksanen, E., Schaub, M., Uddling, J., Wilkinson, M. (2007) Risk assessments for forest trees: the performance of the ozone flux versus the AOT concepts. Environmental Pollution 146, 608-616. https://doi.org/10.1016/j.envpol.2006.06.012
  28. Karlsson, P.E., Uddling, J., Skärby, L., Wallin, G., Selldén, G. (2003) Impact of ozone on the growth of birch (Betula pendula) saplings. Environmental Pollution 124, 485-495. https://doi.org/10.1016/S0269-7491(03)00010-1
  29. Karnosky, D.F., Percy, K.E., Thakur, R.C., Honrath, R.E. Jr. (2003a) Air pollution and global change: a double challenge to forest ecosystems. In Air Pollution, Global Change and Forests in the New Millennium (Karnosky, D.F., Percy, K.E., Chappelka, A.H., Simpson, C. and Pikkarainen, J. Eds), Developments in Environmental Science vol.3. Elsevier, Oxford, pp. 1-42.
  30. Karnosky, D.F., Pregitzer, K.S., Zak, D.R., Kubiske, M.E., Hendrey, G.R., Weinstein, D., Nosal, M., Percy, K.E. (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment 28, 965-981. https://doi.org/10.1111/j.1365-3040.2005.01362.x
  31. Karnosky, D.F., Skelly, J.M., Percy, K.E., Chappelka, A.H. (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution un US forests. Environmental Pollution 147, 489-506. https://doi.org/10.1016/j.envpol.2006.08.043
  32. Karnosky, D.F., Zak, D.R., Pregitzer, K.S., Awmack, C.S., Bockheim, J.G., Dickson, R.E., Hendrey, G.R., Host, G.E., King, J.S., Kopper, B.J., Kruger, E.L., Kubiske, M.E., Lindroth, R.L., Mattson, W.J., McDonald, E.P., Noormets, A., Oksanen, E., Parsons, W.F.J., Percy, K.E., Podila, G.K., Riemenschneider, D.E., Sharma, P., Thakur, R., Sôber, A., Sôber, J., Jones, W.S., Anttonen, S., Vapaavuori, E., Mankovska, B., Heilman, W., Isebrands, J.G. (2003b) Tropospheric $O_{3}$ moderates responses of temperate hardwood forests to elevated $CO_{2}$: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology 17, 289-304. https://doi.org/10.1046/j.1365-2435.2003.00733.x
  33. Karonen, M., Ossipov, V., Ossipova, S., Kapari, L., Loponen, J., Matsumura, H., Kohno, Y., Mikami, C., Sakai, Y., Izuta, T., Pihlaja, K. (2006) Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings. Journal of Chemical Ecology 32, 1445-1458. https://doi.org/10.1007/s10886-006-9061-8
  34. Kasurinen, A., Keinänen, M.M., Kaipainen, S., Nilsson, L.O., Vapaavuori, E., Kontro, M.H., Holopainen, T. (2005) Below-ground responses of silver birch trees exposed to elevated $CO_{2}$ and $O_{3}$ levels during three growing seasons. Global Change Biology 11, 1167- 1179. https://doi.org/10.1111/j.1365-2486.2005.00970.x
  35. Kasurinen, A., Kokko-Gonzales, P., Riikonen, J., Vapaavuori, E., Holopainen, T. (2004) Soil $CO_{2}$ efflux of two silver birch clones exposed to elevated $CO_{2}$ and $O_{3}$ levels during three growing seasons. Global Change Biology 10, 1654-1665. https://doi.org/10.1111/j.1365-2486.2004.00841.x
  36. Kasurinen, A., Peltonen, P.A., Julkunen-Tiitto, R., Vapaavuori, E., Nuutinen, V., Holopainen, T., Holopainen, J.K. (2007) Effects of elevated $CO_{2}$ and $O_{3}$ on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant and Soil 292, 25-43. https://doi.org/10.1007/s11104-007-9199-3
  37. Kasurinen, A., Riikonen, J., Oksanen, E., Vapaavuori, E., Holopainen, T. (2006) Chemical composition and decomposition of silver birch leaf litter produced under elevated $CO_{2}$ and $O_{3}$. Plant and Soil 282, 261-280. https://doi.org/10.1007/s11104-005-6026-6
  38. Kerstiens, G. (1998) Shade-tolerance as a predictor of responses to elevated $CO_{2}$. Physiologia Plantarum 102, 472-488. https://doi.org/10.1034/j.1399-3054.1998.1020316.x
  39. King, J.S., Kubiske, M.E., Pregitzer, K.S., Hendrey, G.R., McDonald, E.P., Giardina, C.P., Quinn, V.S., Karnosky, D.F. (2005) Tropospheric $O_{3}$ compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric $CO_{2}$. New Phytologist 168, 623-636. https://doi.org/10.1111/j.1469-8137.2005.01557.x
  40. King, J.S., Pregitzer, K.S., Zak, D.R., Sober, J., Isebrands, J.G., Dickson, R.E., Hendrey, G.R., Karnosky, D.F. (2001) Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric $CO_{2}$ and tropospheric $O_{3}$. Oecologia 128, 237-250. https://doi.org/10.1007/s004420100656
  41. Kitao, M., Koike, T., Tobita, H., Maruyama, Y. (2005) Elevated $CO_{2}$ and limited nitrogen nutrition can restrict excitation energy dissipation in photosystem II of Japanese white birch (Betula platyphylla var. japonica) leaves. Physiologia Plantarum 125, 64-73. https://doi.org/10.1111/j.1399-3054.2005.00540.x
  42. Kitao, M., Lei, T.T., Koike, T., Kayama, M., Tobita, H., Maruyama, Y. (2007) Interaction of drought and elevated $CO_{2}$ concentration on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch seedlings grown with limited N availability. Tree Physiology 27, 727-735. https://doi.org/10.1093/treephys/27.5.727
  43. Kohno, Y., Matsumura, H., Ishii, T., Izuta, T. (2005) Establishing critical levels of air pollutants for protecting East Asian vegetation-A challenge. In Plant Responses to Air Pollution and Global Change (Omasa, K., Nouchi, I. and De Kok, L.J. Eds), Springer, pp. 243-250.
  44. Koike, T. (1988) Leaf structure and photosynthetic performance as related to the forest succession of deciduous broad-leaved trees. Plant Species Biology 3, 77-87. https://doi.org/10.1111/j.1442-1984.1988.tb00173.x
  45. Koike, T. (1995a) Physiological ecology of the growth characteristics of Japanese mountain birch in northern Japan: a comparison with Japanese mountain white birch. In Vegetation Science in Forestry (Box, E.O., Peet, R.K., Miyazawa, T., Yamada, I., Fujiwara, K. and Maycock, P.F. Eds), Kluwer Academic Publishers, The Netherlands, pp. 409-422.
  46. Koike, T. (1995b) Effects of $CO_{2}$ in interaction with temperature and soil fertility on the foliar phenology of alder, birch, and maple seedlings. Canadian Journal of Botany 73, 149-157. https://doi.org/10.1139/b95-018
  47. Koike, T., Lei, T.T., Maximov, T.C., Tabuchi, R., Takahashi, K., Ivanov, B.I. (1996) Comparison of the photosynthetic capacity of Siberian and Japanese birch seedlings grown in elevated $CO_{2}$ and temperature. Tree Physiology 16, 381-385. https://doi.org/10.1093/treephys/16.3.381
  48. Koike, T., Tobita, H., Shibata, T., Matsuki, S., Konno, K., Kitao, M., Yamashita, N., Maruyama, Y. (2006) Defense characteristics of seral deciduous broad-leaved tree seedlings grown under differing levels of $CO_{2}$ and nitrogen. Population Ecology 48, 23-29. https://doi.org/10.1007/s10144-005-0236-x
  49. Kolb, T.E., Matyssek, R. (2003) Limitations and perspectives about scaling ozone impacts in trees. In Air Pollution, Global Change and Forests in the New Millennium (Karnosky, D.F., Percy, K.E., Chappelka, A.H., Simpson, C. and Pikkarainen, J. Eds), Developments in Environmental Science vol.3., Elsevier, Oxford, pp. 141-174.
  50. Kontunen-Soppela, S., Ossipov, V., Ossipova, S., Oksanen, E. (2007) Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Global Change Biology 13, 1053-1067. https://doi.org/10.1111/j.1365-2486.2007.01332.x
  51. Kontunen-Soppela, S., Riikonen, J., Ruhanen, H., Brosché, M., Somervuo, P., Peltonen, P., Kangasjärvi, J., Auvinen, P., Paulin, L., Keinänen, M., Oksanen, E., Vapaavuori, E. (2010) Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated $CO_{2}$ and tropospheric ozone. Plant, Cell and Environment 33, 1016-1028. https://doi.org/10.1111/j.1365-3040.2010.02123.x
  52. Kopper, B.J., Lindroth, R.L., Nordheim, E.V. (2001) $CO_{2}$ and $O_{3}$ effects on paper birch (Betulaceae: Betula papyrifera) phytochemistry and whitemarked tussock moth (Lymantriidae: Orgyia leucostigma) performance. Environmental Entomology 30, 1119-1126. https://doi.org/10.1603/0046-225X-30.6.1119
  53. Körner, C., Morgan, J., Norby, R. (2007) $CO_{2}$ fertilization: when, where, how much? In Terrestrial Ecosystems in a Changing World (Canadell, J.G., Pataki, D.E. and Pitelka, L.F. Eds), Springer, Berlin, pp. 9-22.
  54. Kostiainen, K., Jalkanen, H., Kaakinen, S., Saranpaa, P. (2006) Wood properties of two silver birch clones exposed to elevated $CO_{2}$ and $O_{3}$. Global Change Biology 12, 1230-1240. https://doi.org/10.1111/j.1365-2486.2006.01165.x
  55. Kostiainen, K., Kaakinen, S., Warsta, E., Kubiske, M.E., Nelson, N.D., Sober, J., Karnosky, D.F., Saranpää, P., Vapaavuori, E. (2008) Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of $CO_{2}$ and $O_{3}$. Tree Physiology 28, 805-813. https://doi.org/10.1093/treephys/28.5.805
  56. Kruijt, B., Barton, C., Rey, A., Jarvis, P.G. (1999) The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric $CO_{2}$ concentration and climate. Hydrology and Earth System Sciences 3, 55- 59. https://doi.org/10.5194/hess-3-55-1999
  57. Kubiske, M.E., Pregitzer, K.S. (1996) Effects of elevated $CO_{2}$ and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiology 16, 351-358. https://doi.org/10.1093/treephys/16.3.351
  58. Kubiske, M.E., Pregitzer, K.S. (1997) Ecophysiological responses to simulated canopy gaps of two tree species of contrasting shade tolerance in elevated $CO_{2}$. Functional Ecology 11, 24-32. https://doi.org/10.1046/j.1365-2435.1997.00050.x
  59. Kubiske, M.E., Quinn, V.S., Marquardt, P.E., Karnosky, D.F. (2007) Effects of elevated atmospheric $CO_{2}$ and/or $O_{3}$ on intra- and interspecific competitive ability of aspen. Plant Biology 9, 342-355. https://doi.org/10.1055/s-2006-924760
  60. Kull, O., Tulva, I., Vapaavuori, E. (2003) Influence of elevated $CO_{2}$ and $O_{3}$ on Betula pendula Roth crown structure. Annals Botany 91, 559-569. https://doi.org/10.1093/aob/mcg052
  61. Kume, A., Numata, S., Watanabe, K., Honoki, H., Nakajima, H., Ishida, M. (2009) Influence of air pollution on the mountain forests along the Tateyama-Kurobe Alpine route. Ecological Research 24, 821-830. https://doi.org/10.1007/s11284-008-0557-2
  62. Kuokkanen, K., Yan, S., Niemelä, P. (2003) Effects of elevated $CO_{2}$ and temperature on the leaf chemistry of birch Betula pendula (Roth) and the feeding behaviour of the weevil Phyllobius maculicornis. Agriculture and Forest Entomology 5, 209-217. https://doi.org/10.1046/j.1461-9563.2003.00177.x
  63. Kurschner, W.M., Wagner, F., Visscher, E.H., Visscher, H. (1997) Predicting the response of leaf stomatal frequency to a future $CO_{2}$-enriched atmosphere: constraints from historical observations. Geologische Rundschau 86, 512-517. https://doi.org/10.1007/s005310050158
  64. Lambers, H., Chapin, F.S., Pons, T.L. (2008) Plant Physiological Ecology. (2nd Ed.), Springer, pp. 58-59.
  65. Lamson, N.I. (1990) Sweet birch. Betula lenta L. In Silvics of North America, vol.2, Hardwoods (Burns, R.M. and Honkala, B.H. Eds), USDA Agriculture Handbook 654, http://www.na.fs.fed.us/pubs/silvics_manual/volume_ 2/betula/lenta.htm, retrieved on 10th Jan. 2012.
  66. Landolt, W., Günthardt-Goerg, M.S., Pfenninger, I., Einig, W., Hampp, R., Maurer, S., Matyssek, R. (1997) Effect of fertilization on ozone-induced changes in the metabolism of birch (Betula pendula) leaves. New Phytologist 137, 389-397. https://doi.org/10.1046/j.1469-8137.1997.00843.x
  67. Lindroth, R.L. (2010) Impacts of elevated atmospheric $CO_{2}$ and $O_{3}$ on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology 36, 2-21. https://doi.org/10.1007/s10886-009-9731-4
  68. Lindroth, R.L., Kopper, B.J., Parsons, W.F.J., Bockheim, J.G., Karnosky, D.F., Hendrey, G.R., Pregitzer, K.S., Isebrands, J.G., Sober, J. (2001) Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environmental Pollution 115, 395-404. https://doi.org/10.1016/S0269-7491(01)00229-9
  69. Liu, L., King, J.S., Giardina, C.P. (2007) Effects of elevated atmospheric $CO_{2}$ and tropospheric $O_{3}$ on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant and Soil 299, 65-82. https://doi.org/10.1007/s11104-007-9361-y
  70. Lorenz, K., Lal, R. (2010) Carbon Sequestration in Forest Ecosystems. Springer, pp. 5-11.
  71. Luo, Y., Canadell, J., Mooney, H.A. (1999) Interactive effects of carbon dioxide and environmental stress on plants and ecosystems. In Carbon Dioxide and Environmental Stress (Luo, Y. and Mooney, H.A. Eds), Academic Press, San Diego, pp. 393-408.
  72. Maenpaa, M., Riikonen, J., Kontunen-Soppela, S., Rousi, M., Oksanen, E. (2011) Vertical profiles reveal impact of ozone and temperature on carbon assimilation of Betula pendula and Populus tremula. Tree Physiology 31, 808-818. https://doi.org/10.1093/treephys/tpr075
  73. Manninen, S., Huttunen, S., Vanhatalo, M., Pakonen, T., Hamalainen, A. (2009) Inter- and intra-specific responses to elevated ozone and chamber climate in northern birches. Environmental Pollution 157, 1679-1688. https://doi.org/10.1016/j.envpol.2008.12.008
  74. Mao, Q., Hoshika, Y., Watanabe, M., Koike, T. (2012) Symptom of ozone injured leaves in 3 kinds of birch species in Hokkaido. Boreal Forest Research. (In press)
  75. Mao, Q.Z., Watanabe, M., Koike, T. (2010) Growth characteristics of two promising tree species for afforestation, birch and larch in the northeastern part of Asia. Eurasian Journal of Forest Research 13, 69-76.
  76. Matsumura, H. (2001) Impacts of ambient ozone and/or acid mist on the growth of 14 tree species: an open-top chamber study conducted in Japan. Water, Air, and Soil Pollution 130, 959-964. https://doi.org/10.1023/A:1013919221030
  77. Matsumura, H., Mikami, C., Sakai, Y., Murayama, K., Izuta, T., Yonekura, T., Miwa, M., Kohno, Y. (2005) Impacts of elevated $O_{3}$ and/or $CO_{2}$ on growth of Betula platyphylla, Betula ermanii, Fagus crenata, Pinus densiflora, and Cryptomeria japonica seedlings. Journal of Agricultural Meteorology 60, 1121-1124. https://doi.org/10.2480/agrmet.1121
  78. Mattson, M.J., Julkunen-Tiitto, R., Herms, D.A. (2005) $CO_{2}$ enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models? Oikos 111, 337-347. https://doi.org/10.1111/j.0030-1299.2005.13634.x
  79. Matyssek, R., Günthardt-Goerg, M.S., Maurer, S., Christ, R. (2002) Tissue structure and respiration of stems of Betula pendula under contrasting ozone exposure and nutrition. Trees 16, 375-385. https://doi.org/10.1007/s00468-002-0183-5
  80. Matyssek, R., Karnosky, D.F., Wieser, G., Percy, K., Oksanen, E., Grams, T.E.E., Kubiske, M., Hanke, D., Pretzsch, H. (2010) Advances in understanding ozone impacts on forest trees: messages from novel phytotron and free-air fumigation studies. Environmental Pollution 158, 1990-2006. https://doi.org/10.1016/j.envpol.2009.11.033
  81. Matyssek, R., Sandermann, H. Jr. (2003) Impact of ozone on trees: an ecophysiological perspective. Progress in Botany 64, 349-404. https://doi.org/10.1007/978-3-642-55819-1_15
  82. Maurer, S., Matyssek, R. (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). II. Carbon balance, water-use efficiency and nutritional status of the whole plant. Trees 12, 11-20.
  83. Maurer, S., Matyssek, R., Günthardt-Goerg, M.S., Landolt, W., Einig, W. (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). I. Responses at the leaf level. Trees 12, 1-10.
  84. McDonald, E.P., Agrell, J., Lindroth, R.L. (1999) $CO_{2}$ and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia 119, 389-399.
  85. Miller, P.R., Arbaugh, M.J., Temple, P.J. (1997) Ozone and its known and potential effects on forests in Western United States. In Forest Decline and Ozone (Sandermann, H., Wellburn, A.R. and Heath, R.L. Eds), Ecological Studies vol.127. Springer, Berlin, pp. 39-68.
  86. Mortensen, L.M. (1995) Effect of carbon dioxide concentration on biomass production and partitioning in Betula pubescens Ehrh. seedlings at different ozone and temperature regimes. Environmental Pollution 87, 337-343. https://doi.org/10.1016/0269-7491(94)P4165-K
  87. Nagashima, T., Ohara, T., Sudo, K., Akimoto, H. (2010) The relative importance of various source regions on East Asia surface ozone. Atmospheric Chemistry and Physics 10, 11305-11322. https://doi.org/10.5194/acp-10-11305-2010
  88. Naja, M., Akimoto, H. (2004) Contribution of regional pollution and long-range transport to the Asia-Pacific region: analysis of long-term ozonesonde data over Japan. Journal of Geophysical Research 109, D21306. https://doi.org/10.1029/2004JD004687
  89. NOAA (2012) Trends in atmospheric carbon dioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html, retrieved on 7th Aug. 2012.
  90. Oksanen, E. (2001) Increasing tropospheric ozone level reduced birch (Betula pendula) dry mass within a five years period. Water, Air, and Soil Pollution 130, 947- 952. https://doi.org/10.1023/A:1013915103283
  91. Oksanen, E. (2003) Responses of selected birch (Betula pendula Roth) clones to ozone change over time. Plant, Cell and Environment 26, 875-886. https://doi.org/10.1046/j.1365-3040.2003.01020.x
  92. Oksanen, E. (2005) Northern conditions enhance the susceptibility of birch (Betula pendula Roth) to oxidative stress caused by ozone. In Plant Responses to Air Pollution and Global Change (Omasa, K., Nouchi, I. and De Kok, L.J. Eds), Springer, pp. 29-36.
  93. Oksanen, E., Freiwald, V., Prozherina, N., Rousi, M. (2005a) Photosynthesis of birch (Betula pendula) is sensitive to springtime frost and ozone. Canadian Journal of Forest Research 35, 703-712. https://doi.org/10.1139/x05-007
  94. Oksanen, E., Manninen, S., Vapaavuori, E., Holopainen, T. (2009) Near-ambient ozone concentrations reduce the vigor of Betula and Populus species in Finland. Ambio 38, 413-417. https://doi.org/10.1579/0044-7447-38.8.413
  95. Oksanen, E., Riikonen, J., Kaakinen, S., Holopainen, T., Vapaavuori, E. (2005b) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing $CO_{2}$ and ozone. Global Change Biology 11, 732-748. https://doi.org/10.1111/j.1365-2486.2005.00938.x
  96. Oksanen, E., Rousi, M. (2001) Differences of Betula origins in ozone sensitivity based on open-field experiment over two growing seasons. Canadian Journal of Forest Research 31, 804-811. https://doi.org/10.1139/x00-194
  97. Oksanen, E., Saleem, A. (1999) Ozone exposure results in various carry-over effects and prolonged reduction in biomass in birch (Betula pendula Roth). Plant, Cell and Environment 22, 1401-1411. https://doi.org/10.1046/j.1365-3040.1999.00501.x
  98. Oksanen, E., Sober, J., Karnosky, D.F. (2001) Impacts of elevated $CO_{2}$ and/or $O_{3}$ on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environment Pollution 115, 437-446. https://doi.org/10.1016/S0269-7491(01)00233-0
  99. Onandia, G., Olsson, A.K., Barth, S., King, J.S., Uddling, J. (2011) Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide. Environmental Pollution 159, 2350-2354. https://doi.org/10.1016/j.envpol.2011.06.001
  100. Paakkonen, E., Günthardt-Goerg, M.S., Holopainen, T. (1998) Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Annals of Botany 82, 49-59. https://doi.org/10.1006/anbo.1998.0656
  101. Packee, E.C., Quang, P.X., Smith, R.R. (1992) Bolewood specific gravity of Alaskan northern forest trees. Forest Products Journal 42, 29-34.
  102. Padu, E., Kollist, H., Tulva, I., Oksanen, E., Moldau, H. (2005) Components of apoplastic ascorbate use in Betula pendula leaves exposed to $CO_{2}$ and $O_{3}$ enrichment. New Phytologist 165, 131-142.
  103. Paoletti, E., Grulke, N.E. (2005) Does living in elevated $CO_{2}$ ameliorate tree response to ozone?-A review on stomatal responses. Environmental Pollution 137, 483- 493. https://doi.org/10.1016/j.envpol.2005.01.035
  104. Paoletti, E., Schaub, M., Matyssek, R., Wieser, G., Augustaitis, A., Bastrup-Birk, A.M., Bytnerowicz, A., Günthardt- Goerg, M.S., Muller-Starck, G., Serengil, Y. (2010) Advances in air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environmental Pollution 158, 1986-1989. https://doi.org/10.1016/j.envpol.2009.11.023
  105. Parsons, W.F.J., Bockheim, J.G., Lindroth, R.L. (2008) Independent, interactive, and species-specific responses of leaf litter decomposition to elevated $CO_{2}$ and $O_{3}$ in a northern hardwood forest. Ecosystems 11, 505-519. https://doi.org/10.1007/s10021-008-9148-x
  106. Pellinen, R.I., Korhonen, M.S., Tauriainen, A.A., Palva, E.T., Kangasjarvi, J. (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiology 130, 549-560. https://doi.org/10.1104/pp.003954
  107. Peltonen, P.A., Vapaavuori, E., Heinonen, J., Julkunen- Tiitto, R., Holopainen, J.K. (2010) Do elevated atmospheric $CO_{2}$ and $O_{3}$ affect food quality and performance of folivorous insects on silver birch? Global Change Biology 16, 918-935. https://doi.org/10.1111/j.1365-2486.2009.02073.x
  108. Peltonen, P.A., Vapaavuori, E., Julkunen-Tiitto, R. (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biology 11, 1305-1324. https://doi.org/10.1111/j.1365-2486.2005.00979.x
  109. Percy, K.E., Awmack, C.S., Lindroth, R.L., Kubiske, M.E., Kopper, B.J., Isebrands, J.G., Pregitzer, K.S., Hendrey, G.R., Dickson, R.E., Zak, D.R., Oksanen, E., Sober, J., Harrington, R., Karnosky, D.F. (2002) Altered performance of forest pests under atmospheres enriched by $CO_{2}$ and $O_{3}$. Nature 420, 403-407. https://doi.org/10.1038/nature01028
  110. Percy, K.E., Mankovska, B., Hopkin, A., Callan, B., Karnosky, D.F. (2003) Ozone affects leaf surface-pest interactions. In Air Pollution, Global Change and Forests in the New Millennium (Karnosky, D.F., Percy, K.E., Chappelka, A.H., Simpson, C. and Pikkarainen, J. Eds), Developments in Environmental Science vol.3, Elsevier, Oxford, pp. 247-258.
  111. Peterson, A.G., Ball, J.T., Luo, Y., Field, C.B., Curtis, P.S., Griffin, K.L., Gunderson, C.A., Norby, R.J., Tissue, D.T., Forstreuter, M., Rey, A., Vogel, C.S., Participants, C. (1999) Quantifying the response of photosynthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under atmospheric $CO_{2}$ enrichment. Plant, Cell and Environment 22, 1109- 1119. https://doi.org/10.1046/j.1365-3040.1999.00489.x
  112. Poorter, H., Perez-Soba, M. (2001) The growth response of plants to elevated $CO_{2}$ under non-optimal environment conditions. Oecologia 129, 1-20. https://doi.org/10.1007/s004420100736
  113. Poorter, H., Roumet, C., Campbell, B.D. (1996) Interspecific variation in the growth response of plants to elevated $CO_{2}$: a search for functional types. In Carbon Dioxide, Populations, and Communities (Korner, C. and Bazzaz, F.A. Eds), Academic Press, San Diego, pp. 375- 412.
  114. Potvin, C., Chapin, F.S., Gonzalez, A., Leadley, P., Reich, P., Roy, J. (2007) Plant biodiversity and responses to elevated carbon dioxide. In Terrestrial Ecosystems in a Changing World (Canadell, J.G., Pataki, D.E. and Pitelka, L.F. Eds), Springer, Berlin, pp. 103-112.
  115. Pregitzer, K., Loya, W., Kubiske, M., Zak, D. (2006) Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 148, 503-516. https://doi.org/10.1007/s00442-006-0381-8
  116. Prozherina, N., Freiwald, V., Rousi, M., Oksanen, E. (2003) Interactive effect of springtime frost and elevated ozone on early growth, foliar injuries and leaf structure of birch (Betula pendula). New Phytologist 159, 623-636. https://doi.org/10.1046/j.1469-8137.2003.00828.x
  117. Quillet, A., Peng, C., Garneau, M. (2010) Toward dynamic global vegetation models for simulating vegetationclimate interactions and feedbacks: recent developments, limitations, and future challenges. Environmental Reviews 18, 333-353. https://doi.org/10.1139/A10-016
  118. Raisanen, J., Tuomenvirta, H. (2009) Interactions between boreal forests and climate change. In Boreal Forest and Climate Change (Hari, P. and Kulmala, L. Eds), Advances in Global Change Research vol. 34. Springer, pp. 479-528.
  119. Rey, A., Jarvis, P.G. (1997) Growth response of young birch trees (Betula pendula Roth.) after four and a half years of $CO_{2}$ exposure. Annals of Botany 80, 809-816. https://doi.org/10.1006/anbo.1997.0526
  120. Rey, A., Jarvis, P.G. (1998) Long-term photosynthetic acclimation to increased atmospheric $CO_{2}$ concentration in young birch (Betula pendula) trees. Tree Physiology 18, 441-450. https://doi.org/10.1093/treephys/18.7.441
  121. Riikonen, J., Holopainen, T., Oksanen, E., Vapaavuori, E. (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of $CO_{2}$ and $O_{3}$ in the field. Tree Physiology 25, 621-632. https://doi.org/10.1093/treephys/25.5.621
  122. Riikonen, J., Kets, K., Darbah, J., Oksanen, E., Sober, A., Vapaavuori, E., Kubiske, M.E., Nelson, N., Karnosky, D.F. (2008a) Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of $CO_{2}$ and $O_{3}$. Tree Physiology 28, 243-254. https://doi.org/10.1093/treephys/28.2.243
  123. Riikonen, J., Lindsberg, M.M., Holopainen, T., Oksanen, E., Lappi, J., Peltonen, P., Vapaavuori, E. (2004) Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiology 24, 1227- 1237. https://doi.org/10.1093/treephys/24.11.1227
  124. Riikonen, J., Maenpaa, M., Alavilamo, M., Silfver, T., Oksanen, E. (2009) Interactive effect of elevated temperature and $O_{3}$ on antioxidant capacity and gas exchange in Betula pendula saplings. Planta 230, 419- 427. https://doi.org/10.1007/s00425-009-0957-8
  125. Riikonen, J., Percy, K.E., Kivimaenpaa, M., Kubiske, M.E., Nelson, N.D., Vapaavuori, E., Karnosky, D.F. (2010) Leaf size and surface characteristics of Betula papyrifera exposed to elevated $CO_{2}$ and $O_{3}$. Environmental Pollution 158, 1029-1035. https://doi.org/10.1016/j.envpol.2009.07.034
  126. Riikonen, J., Syrjaa, L., Tulva, I., Mand, P., Oksanen, E., Poteri, M., Vapaavuori, E. (2008b) Stomatal characteristics and infection biology of Pyrenopeziza betulicola in Betula pendula trees grown under elevated $CO_{2}$ and $O_{3}$. Environmental Pollution 156, 536-543. https://doi.org/10.1016/j.envpol.2008.01.008
  127. Safford, L.O., Bjorkbom, J.C., Zasada, J.C. (1990) Paper birch. Betula papyrifera Marsh. In Silvics of North America, vol.2, Hardwoods (Burns, R.M. and Honkala, B.H. Eds), USDA Agriculture Handbook 654, http:// www.na.fs.fed.us/pubs/silvics_manual/volume_2/betula /papyrifera.htm, retrieved on 10th Jan. 2012.
  128. Saleem, A., Loponen, J., Pihlaja, K., Oksanen, E. (2001) Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula ROTH). Journal of Chemical Ecology 27, 1049-1062. https://doi.org/10.1023/A:1010351406931
  129. Sefcik, L.K., Zak, D.R., Ellisworth, D.S. (2006) Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Tree Physiology 26, 1589-1599. https://doi.org/10.1093/treephys/26.12.1589
  130. Shavnin, S., Maurer, S., Matyssek, R., Bilger, W., Scheidegger, C. (1999) The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula). Trees 14, 10-16. https://doi.org/10.1007/s004680050002
  131. Shimizu, H., Feng, Y.W. (2007) Ozone and/or water stress could have influenced the Betula ermanii Cham. Forest decline observed at Oku-Nikko, Japan. Environment Monitoring and Assessment 128, 109-119. https://doi.org/10.1007/s10661-006-9409-0
  132. Sitch, S., Cox, P.M., Collins, W.J., Huntingford, C. (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791- 795. https://doi.org/10.1038/nature06059
  133. Smith, W.H. (1990) Air Pollution and Forests. (2nd Ed.), Springer-Verlag, New York, pp. 1-610.
  134. Song, H.T., Cheng, S. (2010) Various growth strategies of yellow birch seedlings in multiple-abiotic factor changing environments. Plant, Soil and Environment 56, 235-243.
  135. Stockwell, W.R., Kramm, G., Scheel, H.E., Mohnen, V.A., Seiler, W. (1997) Ozone formation, destruction and exposure in Europe and the United States. In Forest Decline and Ozone (Sandermann, H., Wellburn, A.R. and Heath, R.L. Eds), Ecological Studies vol.127, Springer, Berlin, pp. 1-38.
  136. Talhelm, A.F., Pregitzer, K.S., Giardina, C.P. (2012) Longterm leaf production response to elevated atmospheric carbon dioxide and tropospheric ozone. Ecosystems 15, 71-82.
  137. Tamura, T., Yonekura, T., Nakaji, T., Feng, Y., Shimizu, H., Izuta, T. (2002) Field survey on phenological characteristics and leaf components of Betula ermanii Cham. and soil chemical property around Mt. Mae- Shirane, Oku-Nikko, Japan. Journal of Japan Society for Atmospheric Environment 37, 320-330. (In Japanese with English abstract)
  138. Tausz, M., Grulke, N.E., Wieser, G. (2007) Defense and avoidance of ozone under global change. Environmental Pollution 147, 525-531. https://doi.org/10.1016/j.envpol.2006.08.042
  139. Tjoelker, M.G., Oleksyn, J., Reich, P.B. (1998) Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated $CO_{2}$ and temperature. Tree Physiology 18, 715-726. https://doi.org/10.1093/treephys/18.11.715
  140. Uddling, J., Günthardt-Goerg, M.S., Matyssek, R., Oksanen, E., Pleijel, H., Selldén, G., Karlsson, P.E. (2004) Biomass reduction of juvenile birch is more strongly related to stomatal uptake of ozone than to indices based on external exposure. Atmospheric Environment 38, 4709-4719. https://doi.org/10.1016/j.atmosenv.2004.05.026
  141. Uddling, J., Hogg, A.J., Teclaw, R.M., Carroll, M.A., Ellsworth, D.S. (2010) Stomatal uptake of $O_{3}$ in aspen and aspen-birch forests under free-air $CO_{2}$ and $O_{3}$ enrichment. Environmental Pollution 158, 2023-2031. https://doi.org/10.1016/j.envpol.2009.12.001
  142. Uddling, J., Karlsson, P.E., Glorvigen, A., Selldén, G. (2005) Ozone impairs autumnal resorption of nitrogen from birch (Betula pendula) leaves, causing an increase in whole-tree nitrogen lass through litter fall. Tree Physiology 26, 113-120.
  143. Uddling, J., Teclaw, R.M., Kubiske, M.E., Pregitzer, K.S., Ellsworth, D.S. (2008) Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone. Tree Physiology 28, 1231-1243. https://doi.org/10.1093/treephys/28.8.1231
  144. Uddling, J., Teclaw, R.M., Pregitzer, K.S., Ellsworth, D.S. (2009) Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Tree Physiology 29, 1367-1380. https://doi.org/10.1093/treephys/tpp070
  145. UNECE (2004) Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends. http://www.rivm.nl/ en/themasites/icpmm/manual-and-downloads/index. html, retrieved on 10th Jan. 2012.
  146. Vahala, J., Ruonala, R., Keinänen, M., Tuominen, H., Kangasjärvi, J. (2003) Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiology 132, 185-195. https://doi.org/10.1104/pp.102.018887
  147. Vanhatalo, M., Bäck, J., Huttunen, S. (2003) Differential impacts of long-term ($CO_{2}$) and $O_{3}$ exposure on growth of northern conifer and deciduous tree species. Trees 17, 211-220.
  148. Vanhatalo, M., Huttunen, S., Bäck, J. (2001) Effects of elevated [$CO_{2}$] and $O_{3}$ on stomatal and surface wax characteristics in leaves of pubescent birch grown under field conditions. Trees 15, 304-313. https://doi.org/10.1007/s004680100105
  149. Vapaavuori, E., Holopainen, J.K., Holopainen, T., Julkunen- Tiitto, R., Kaakinen, S., Kasurinen, A., Kontunen- Soppela, S., Kostiainen, K., Oksanen, E., Peltonen, P., Riikonen, J., Tulva, I. (2009) Rising atmospheric $CO_{2}$ concentration partially masks the negative effects of elevated $O_{3}$ in silver birch (Betula pendula Roth). Ambio 38, 418-424. https://doi.org/10.1579/0044-7447-38.8.418
  150. Vingarzan, R. (2004) A review of surface ozone background levels and trends. Atmospheric Environment 38, 3431-3442. https://doi.org/10.1016/j.atmosenv.2004.03.030
  151. Volin, J.C., Reich, P.B., Givnish, T.J. (1998) Elevated carbon dioxide ameliorates the negative effect of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytologist 138, 315-325. https://doi.org/10.1046/j.1469-8137.1998.00100.x
  152. Wang, X.W., Ji, L.Z., Zhang, Q.H., Liu, Y., Wang, G.Q. (2009) Effects of elevated $CO_{2}$ on feeding preference and performance of the gypsy moth (Lymantria dispar) larvae. Journal of Applied Entomology 133, 47-57. https://doi.org/10.1111/j.1439-0418.2008.01320.x
  153. Wang, Y.P., Rey, A., Jarvis, P.G. (1998) Carbon balance of young birch trees grown in ambient and elevated atmospheric $CO_{2}$ concentrations. Global Change Biology 4, 797-807. https://doi.org/10.1046/j.1365-2486.1998.00170.x
  154. Wayne, P.M., Bazzaz, F.A. (1997) Light acquisition and growth by competing individuals in $CO_{2}$-enriched atmospheres: consequences for size structure in regenerating birch seedlings. Journal of Ecology 85, 29-42. https://doi.org/10.2307/2960625
  155. Wittig, V.E., Ainsworth, E.A., Long, S.P. (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell and Environment 30, 1150- 1162. https://doi.org/10.1111/j.1365-3040.2007.01717.x
  156. Wittig, V.E., Ainsworth, E.A., Naidu, S.L., Karnosky, D.F., Long, S.P. (2009) Quantifying the impact of current and future tropospheric ozone on biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology 15, 396-424. https://doi.org/10.1111/j.1365-2486.2008.01774.x
  157. Wittmann, C., Matyssek, R., Pfanz, H., Humar, M. (2007) Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). Environmental Pollution 150, 258-266. https://doi.org/10.1016/j.envpol.2007.01.013
  158. Yamaguchi, M., Watanabe, M., Matsumura, H., Kohno, Y., Izuta, T. (2011) Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. Asian Journal of Atmospheric Environment 5, 65-78. https://doi.org/10.5572/ajae.2011.5.2.065
  159. Yamaji, K., Julkunen-Tiitto, R., Rousi, M., Freiwald, V., Oksanen, E. (2003) Ozone exposure over two growing seasons alters root-to-shoot ratio and chemical composition of birch (Betula pendula Roth). Global Change Biology 9, 1363-1377. https://doi.org/10.1046/j.1365-2486.2003.00669.x
  160. Yamaji, K., Ohara, T., Uno, I., Kurokawa, J., Pochanart, P., Akimoto, H. (2008) Future prediction of surface ozone over east Asia using models-3 community multiscale air quality modeling system and regional emission inventory in Asia. Journal of Geophysical Research 113, D08306.
  161. Zak, D.R., Holmes, W.E., Pregitzer, K.S. (2007a) Atmospheric $CO_{2}$ and $O_{3}$ alter the flow of $^{15}N$ in developing forest ecosystems. Ecology 88, 2630-2639. https://doi.org/10.1890/06-1819.1
  162. Zak, D.R., Holmes, W.E., Pregitzer, K.S., King, J.S., Ellisworth, D.S., Kubiske, M.E. (2007b) Belowground competition and the response of developing forest communities to atmospheric $CO_{2}$ and $O_{3}$. Global Change Biology 13, 2230-2238. https://doi.org/10.1111/j.1365-2486.2007.01436.x
  163. Zhang, Y., Duan, B., Qiao, Y., Wang, K., Korpelainen, H., Li, C. (2008) Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated $CO_{2}$ and planting density. Forest Ecology and Management 255, 1937-1944. https://doi.org/10.1016/j.foreco.2007.12.015
  164. Zyryanova, O.A., Terazawa, M., Koike, T., Zyryanov, V.I. (2010) White birch trees as resource species of Russia: their distribution, ecophysiological features, multiple utilizations. Eurasian Journal of Forest Research 13, 25-40.

Cited by

  1. Photosynthetic responses of Monarch birch seedlings to differing timings of free air ozone fumigation vol.127, pp.2, 2014, https://doi.org/10.1007/s10265-013-0622-y
  2. Olive Oil for Dressing Plant Leaves so as to Avoid O3 Injury vol.227, pp.8, 2016, https://doi.org/10.1007/s11270-016-2986-9
  3. Responses of symbiotic N2 fixation in Alnus species to the projected elevated CO2 environment vol.30, pp.2, 2016, https://doi.org/10.1007/s00468-015-1297-x
  4. Effect of ambient ozone at the somma of Lake Mashu on growth and leaf gas exchange in Betula ermanii and Betula platyphylla var. japonica vol.90, pp.None, 2012, https://doi.org/10.1016/j.envexpbot.2012.11.003