DOI QR코드

DOI QR Code

Characteristics of Environment-friendly Waterborne Coating Agent Applied to Inorganic Adsorbent

무기흡착제가 적용된 친환경 수성 코팅제의 특성 연구

  • Shin, Jong-Sub (New Functional Components Research Team, Korea Institute of Footwear & Leather Technology) ;
  • Lee, Jung-Hee (New Functional Components Research Team, Korea Institute of Footwear & Leather Technology) ;
  • Kwak, Eun-Mi (New Functional Components Research Team, Korea Institute of Footwear & Leather Technology) ;
  • Yun, Jong-Kuk (New Functional Components Research Team, Korea Institute of Footwear & Leather Technology) ;
  • Kim, Hyun-Bum (Jin Kwang Corporation)
  • Received : 2012.03.08
  • Accepted : 2012.05.23
  • Published : 2012.09.25

Abstract

This study focuses on mechanical property enhancement and volatile organic compounds (VOCs) reduction characteristic of environmentally-friendly waterborne coatings. We synthesized a series of organic-inorganic hybrid waterborne polyurethanes by using poly(tetramethylene glycol) 2000, polycarbonate diol 2000, isophorone diisocyanate, dimethylolpropionic acid and titanium dioxide. The study on the effects of the R ratio([NCO]/[OH]) and inorganic contents on environmentally-friendly waterborne coatings showed that the R ratio with more than 1.5 is appropriate due to arrangement of hardsegments. The applied $TiO_2$ on films reduced volatile organic compounds (VOCs).

친환경 수성 코팅제의 물성 강화 및 VOCs의 저감 특성을 연구하기 위해서 poly(tetramethylene glycol) 2000, polycarbonate diol 2000, isophorone diisocyanate, dimethylolpropionic acid, 그리고 titanium dioxide를 사용하여 유/무기 하이브리드 수분산 폴리우레탄 코팅제를 제조하였다. R ratio([NCO]/[OH])에 따른 코팅제의 필름 물성 및 무기물의 적용으로 인한 VOCs의 저감 특성에 대해서 연구한 결과 R ratio가 1.5 이상인 경우에서 코팅제로 적합함을 확인하였으며 이는 하드 세그먼트의 영향으로 여겨지며 $TiO_2$의 적용으로 코팅 후 VOCs의 저감 특성을 확인하였다.

Keywords

References

  1. D. Z. Wang, Appl. Catal. B: Env., 8, 31 (1996). https://doi.org/10.1016/0926-3373(96)80045-2
  2. K. W. You, Y. S. Ge, B. Hu, Z. W. Ning, S. T. Zhao, Y. N. Zhang, and P. Xie, J. Env. Sci., 19, 1208 (2007). https://doi.org/10.1016/S1001-0742(07)60197-1
  3. W. K. Jo and J. H. Lee, Env. Eng. Res., 14, 180 (2009). https://doi.org/10.4491/eer.2009.14.3.180
  4. M. Zeinali, L. L. McConnell, C. J. Hapeman, A. Nguyen, W. F. Schmidt, and C. J. Howard, Atmos. Env., 43, 3407 (2011).
  5. B. K. Lee and K. R. Jung, J. Kor. Soc. Atmos. Env., 16, 39 (2000).
  6. N. V. Sastry and R. R. Thakor, J. Coat. Tech. Res., 6, 11 (2009). https://doi.org/10.1007/s11998-008-9119-3
  7. M. L. Green, J. Coat. Tech., 73, 55 (2001). https://doi.org/10.1007/BF02698024
  8. F. A. Zhang and C. L. Yu, J. Coat Tech. Res., 4, 289 (2007). https://doi.org/10.1007/s11998-007-9045-9
  9. T. Annable, R. A. Brown, J. C. Padget, and A. V. Den Elshout, Surf. Coat. Int. Part B: Coat. Trans., 81, 321 (1998).
  10. M. R. Patel, J. V. Patel, D. Mishra, and V. K. Sinha, J. Polym. Env., 15, 97 (2007). https://doi.org/10.1007/s10924-007-0050-y
  11. B. Erdem, R. A. Hunsiker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, Langmuir, 17, 2664 (2001). https://doi.org/10.1021/la0015213
  12. W. J. Jo and H. D. Chun, J. Env. Sci.(Korea), 14, 785 (2005).
  13. S. Y. Yoon, J. H. Roh, B. K. Ryu, S. J. Par, and S. H. Lee, Kor. J. Mater. Res., 10, 328 (2000).