DOI QR코드

DOI QR Code

AMP-activated protein kinase: implications on ischemic diseases

  • Ahn, Yong-Joo (Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School) ;
  • Kim, Hwe-Won (Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School) ;
  • Lim, Hee-Jin (Department of Robotics Engineering, DGIST) ;
  • Lee, Max (Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School) ;
  • Kang, Yu-Hyun (Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School) ;
  • Moon, Sang-Jun (Department of Robotics Engineering, DGIST) ;
  • Kim, Hyeon-Soo (Department of Anatomy, Korea University College of Medicine) ;
  • Kim, Hyung-Hwan (Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School)
  • Received : 2012.07.19
  • Published : 2012.09.30

Abstract

Ischemia is a blockage of blood supply due to an embolism or a hemorrhage in a blood vessel. When an organ cannot receive oxygenated blood and can therefore no longer replenish its blood supply due to ischemia, stresses, such as the disruption of blood glucose homeostasis, hypoglycemia and hypoxia, activate the AMPK complex. LKB1 and $CaMKK{\beta}$ are essential activators of the AMPK signaling pathway. AMPK triggers proangiogenic effects through the eNOS protein in tissues with ischemic conditions, where cells are vulnerable to apoptosis, autophagy and necrosis. The AMPK complex acts to restore blood glucose levels and ATP levels back to homeostasis. This review will discuss AMPK, as well as its key activators (LKB1 and $CaMKK{\beta}$), as a central energy regulator and evaluate the upstream and downstream regulating pathways of AMPK. We will also discuss how we can control this important enzyme in ischemic conditions to prevent harmful effects in patients with vascular damage.

Keywords

References

  1. Soler, E. P. and Ruiz, V. C. (2010) Epidemiology and risk factors of cerebral ischemia and ischemic heart diseases: Similarities and differences. Curr. Cardio. Rev. 6, 138-149. https://doi.org/10.2174/157340310791658785
  2. Jin, J., Mullen, T. D., Hou, Q., Bielawski, J., Bielawska, A., Zhang, X., Obeid, L. M, Hannun, Y. A, and Hsu, Y., T. (2009) AMPK inhibitor Compound C stimulates ceramide production and promotes Bax redistribution and apoptosis in MCF7 breast carcinoma cells. J. Lipid Res. 50, 2389-2397. https://doi.org/10.1194/jlr.M900119-JLR200
  3. Zhao, Z. Q., Corvera, J. S., Halkos, M. E., Kerendi, F., Wang, N. P., Guyton, R. A., and Vinten-Johansen, J. (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 285, 579-588.
  4. Hardie, D. G. and Sakamoto, K. (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology. 21, 48-60. https://doi.org/10.1152/physiol.00044.2005
  5. Arad, M., Seidman, C. E. and Seidman, J. (2007) AMP-Activated Protein Kinase in the Heart during health and disease. Circ. Res. 100, 474-488. https://doi.org/10.1161/01.RES.0000258446.23525.37
  6. Carling, D., Mayer, F. V., Sanders, M. J. and Gamblin, S. J. (2011) AMP-activated protein kinase: nature's energy sensor. Nat. Chem. Biol. 7, 512-518. https://doi.org/10.1038/nchembio.610
  7. Green, M. F., Anderson, K. A. and Means, A. R. (2011) Characterization of the CaMKK [beta]-AMPK signaling complex. Cell Signaling 23, 2005-2012. https://doi.org/10.1016/j.cellsig.2011.07.014
  8. Zeqiraj, E., Filippi, B. M., Deak, M., Alessi, D. R. and Van Aalten, D. M. F. (2009) Structure of the LKB1-STRADMO25 complex reveals an allosteric mechanism of kinase activation. Science 326, 1707-1711. https://doi.org/10.1126/science.1178377
  9. Iglesias, M. A., Ye, J. M., Frangioudakis, G., Saha, A. K., Tomas, E., Ruderman, N. B., Cooney, G. J. and Kraegen, E. W. (2002) AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin- resistant high-fat-fed rats. Diabetes 51, 2886-2894. https://doi.org/10.2337/diabetes.51.10.2886
  10. Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G. D., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M. and Carling, D. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004-2008. https://doi.org/10.1016/j.cub.2003.10.031
  11. Hardie, D. G. (2008) Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett. 582, 81-89. https://doi.org/10.1016/j.febslet.2007.11.018
  12. Shackelford, D. B. and Shaw, R. J. (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563-575 https://doi.org/10.1038/nrc2676
  13. McBride, A., Ghilagaber, S., Nikolaev, A. and Hardie, D. G. (2009) The glycogen-binding domain on the AMPK [beta] subunit allows the kinase to act as a glycogen Sensor. Cell Metab. 9, 23-34. https://doi.org/10.1016/j.cmet.2008.11.008
  14. Kemp, B. E. (2004) Bateman domains and adenosine derivatives form a binding contract. J. Clin. Invest. 113, 182-184. https://doi.org/10.1172/JCI200420846
  15. Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart, G., Scullion, G. A., Norman, D. G. and Hardie, D. G. (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 274-284. https://doi.org/10.1172/JCI19874
  16. Hawley, S. A., Selbert, M. A., Goldstein, E. G., Edelman, A. M., Carling, D. and Hardie, D. G. (1995) 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270, 27186-27191. https://doi.org/10.1074/jbc.270.45.27186
  17. Vazquez-Chantada, M., Ariz, U., Varela-Rey, M., Embade, N., Martínez-Lopez, N, Fernàndez-Ramos, D., Gómez- Santos, L, Lamas, S., Lu, S. C. and Martínez-Chantar, M. L. (2009) Evidence for LKB1/AMP activated protein kinase/ endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S adenosylmethionine, and nitric oxide in hepatocyte proliferation. Hepatology 49, 608-617. https://doi.org/10.1002/hep.22660
  18. Park, S., Scheffler, T. and Gerrard, D. (2011) Chronic high cytosolic calcium decreases AICAR-induced AMPK activity via calcium/calmodulin activated protein kinase II signaling cascade. Cell Calcium 50, 73-83. https://doi.org/10.1016/j.ceca.2011.05.009
  19. Hawley, S, A., Davison, M., Woods, A., Davies, S. P., Beri, R. K., Carling, D. and Hardie, D. G. (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271, 27879-27887. https://doi.org/10.1074/jbc.271.44.27879
  20. Darrabie, M. D., Arciniegas, A. J. L., Mishra, R., Bowles, D. E., Jacobs, D. O. and Santacruz, L. (2011) AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. Am. J. Physiol. Endocrinol. Metab. 300, E870-876 https://doi.org/10.1152/ajpendo.00554.2010
  21. Hawley, S., Boudeau, J., Reid, J., Mustard, K., Udd, L., Mäkelä, T., Alessi, D. and Hardie, D. G. (2003) Complexes between the LKB1 tumor suppressor, STRAD${\alpha}/{\beta}$ and MO25${\alpha}/{\beta}$ are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28. https://doi.org/10.1186/1475-4924-2-28
  22. Hurley, R. L., Anderson, K. A., Franzone, J. M., Kemp, B. E., Means, A. R. and Witters, L. A. (2005) The Ca2+/calmodulin- dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060-29066. https://doi.org/10.1074/jbc.M503824200
  23. Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R., Carlson, M. and Carling, D. (2005) Ca2+/calmodulin-dependent protein kinase kinase-[ beta] acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21-33. https://doi.org/10.1016/j.cmet.2005.06.005
  24. Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G. and Hardie, D. G. (2005) Calmodulin-dependent protein kinase kinase-[beta] is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9-19. https://doi.org/10.1016/j.cmet.2005.05.009
  25. Thors, B., Halldórsson, H. and Thorgeirsson, G. (2010) eNOS activation mediated by AMPK after stimulation of endothelial cells with histamine or thrombin is dependent on LKB1. Biochim. Biophys. Acta. 1813, 322-331.
  26. Browne, G. J, Finn, S. G. and Proud, C. G. (2004) Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J. Biol. Chem. 279, 12220-12231. https://doi.org/10.1074/jbc.M309773200
  27. Bolster, D. R, Crozier, S. J, Kimball, S. R. and Jefferson, L. S. (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J. Biol. Chem. 277, 23977-23980. https://doi.org/10.1074/jbc.C200171200
  28. Inoki, K., Zhu, T. and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590. https://doi.org/10.1016/S0092-8674(03)00929-2
  29. Gwinn, D. M., Shackelford, D. B., Egan, D. F, Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E. and Shaw, R. J. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226. https://doi.org/10.1016/j.molcel.2008.03.003
  30. Kalender, A., Selvaraj, A., Kim, S. Y., Gulati, P., Brûlé, S., Viollet, B., Kemp, B. E., Bardeesy, N., Dennis, P. and Schlager, J. J. (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390-401. https://doi.org/10.1016/j.cmet.2010.03.014
  31. Packer, L. and Cadenas, E. (2011) Lipoic acid: energy metabolism and redox regulation of transcription and cell signaling. J. Clin. Biochem. Nutr. 48, 26-32.
  32. Horvath, T. L., Erion, D. M., Elsworth, J. D., Roth, R. H., Shulman, G. I. and Andrews, Z. B. (2011) GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function. Neurobiol. Dis. 43, 152-162. https://doi.org/10.1016/j.nbd.2011.03.005
  33. Wang, Z., Pini, M., Yao, T., Zhou, Z., Sun, C., Fantuzzi, G. and Song, Z. (2011) Homocysteine suppresses lipolysis in adipocytes by activating the AMPK pathway. Am. J. Physiol. Endocrinol. Metab. 301, E703-E712. https://doi.org/10.1152/ajpendo.00050.2011
  34. Vazquez-Martin, A., Oliveras-Ferraros, C., Del Barco, S., Martin-Castillo, B. and Menendez, J. (2009) The antidiabetic drug metformin: a pharmaceutical AMPK activator to overcome breast cancer resistance to HER2 inhibitors while decreasing risk of cardiomyopathy. Ann. Oncol. 20, 592-595.
  35. Hawley, S. A, Ross, F. A, Chevtzoff, C., Green, K. A., Evans, A., Fogarty, S., Towler, M. C., Brown, L. J., Ogunbayo, O. A. and Evans, A. M. (2010) Use of cells expressing [gamma] subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554-565. https://doi.org/10.1016/j.cmet.2010.04.001
  36. Centeno-Baez, C., Dallaire, P. and Marette, A. (2011) Resveratrol inhibition of inducible nitric oxide synthase in skeletal muscle involves AMPK but not SIRT1. Am. J. Physiol. Endocrinol. Metab. 301, E922-E930. https://doi.org/10.1152/ajpendo.00530.2010
  37. Wang. Y., Nishi, M., Doi, A., Shono, T., Furukawa, Y., Shimada, T., Furuta, H., Sasaki, H. and Nanjo, K. (2010) Ghrelin inhibits insulin secretion through the AMPKUCP2 pathway in [beta] cells. FEBS Lett. 584, 1503-1508. https://doi.org/10.1016/j.febslet.2010.02.069
  38. Pene, F., Claessens, Y. E., Muller, O., Viguie, F., Mayeux, P., Dreyfus, F., Lacombe, C. and Bouscary, D. (2002) Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6- kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene. 21, 6587-6597. https://doi.org/10.1038/sj.onc.1205923
  39. Altarejos, J. Y., Taniguchi, M., Clanachan, A. S. and Lopaschuk, G. D. (2005) Myocardial ischemia differentially regulates LKB1 and an alternate 5'-AMP-activated protein kinase kinase. J. Biol. Chem. 280, 183-190. https://doi.org/10.1074/jbc.M411810200
  40. Zhang, H., Zhang, G., Gonzalez, F. J., Park, S. and Cai, D. (2011) Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation. PLoS Biol. 9, e1001112. https://doi.org/10.1371/journal.pbio.1001112
  41. Nagata, D., Mogi, M. and Walsh, K. (2003) AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J. Biol. Chem. 278, 31000-31006. https://doi.org/10.1074/jbc.M300643200
  42. Ouchi, N., Kobayashi, H., Kihara, S., Kumada, M., Sato, K., Inoue, T., Funahashi, T. and Walsh, K. (2004) Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279, 1304-1309. https://doi.org/10.1074/jbc.M310389200
  43. Sansal, I. and Sellers, W. R. (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954-2963. https://doi.org/10.1200/JCO.2004.02.141
  44. Gonon, A. T, Widegren, U., Bulhak, A., Salehzadeh, F., Persson, J., Sjöquist, P. O. and Pernow, J. (2008) Adiponectin protects against myocardial ischaemia-reperfusion injury via AMP-activated protein kinase, Akt, and nitric oxide. Cardiovasc. Res. 78, 116-122. https://doi.org/10.1093/cvr/cvn017
  45. Levine, Y. C., Li, G. K. and Michel, T. (2007) Agonistmodulated regulation of AMP-activated protein kinase (AMPK) in endothelial cells. J. Biol. Chem. 282, 20351-20364 https://doi.org/10.1074/jbc.M702182200
  46. Nagata, D., Kiyosue, A., Takahashi, M., Satonaka, H., Tanaka, K., Sata, M., Nagano, T., Nagai, R. and Hirata, Y. (2009) A new constitutively active mutant of AMP-activated protein kinase inhibits anoxia-induced apoptosis of vascular endothelial cell. Hypertens Res. 32, 133-139. https://doi.org/10.1038/hr.2008.25
  47. Calvert, J. W., Gundewar, S., Jha, S., Greer, J. J. M., Bestermann, W. H., Tian, R. and Lefer, D. J. (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-Mediated signaling. Diabetes 57, 696-705. https://doi.org/10.2337/db07-1098
  48. McCullough, L. D., Zeng, Z., Li, H., Landree, L. E., McFadden, J. and Ronnett, G. V. (2005) Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J. Biol. Chem. 280, 20493-20502. https://doi.org/10.1074/jbc.M409985200
  49. Li, J., Zeng. Z., Viollet, B., Ronnett, G. V. and McCullough, L. D. (2007) Neuroprotective effects of adenosine monophosphate- activated protein kinase inhibition and gene deletion in stroke. Stroke 38, 2992-2999. https://doi.org/10.1161/STROKEAHA.107.490904
  50. Harada, S., Fujita-Hamabe, W. and Tokuyama, S. (2010) The importance of regulation of blood glucose levels through activation of peripheral 5'-AMP-activated protein kinase on ischemic neuronal damage. Brain Res. 1351, 254-263. https://doi.org/10.1016/j.brainres.2010.06.052
  51. Avraham, Y., Davidi, N., Lassri, V., Vorobiev, L., Kabesa, M., Dayan, M., Chernoguz, D., Berry, E. and Leker, R. (2011) Leptin induces neuroprotection neurogenesis and angiogenesis after stroke. Curr. Neurovasc. Res. 8, 313-322. https://doi.org/10.2174/156720211798120954
  52. Ellingson, W. J., Chesser, D. and Winder, W. W. (2007) Effects of 3-phosphoglycerate and other metabolites on the activation of AMP-activated protein kinase by LKB1-STRAD-MO25. Am. J. Physiol. Endocrinol. Metab. 292, E400-E407. https://doi.org/10.1152/ajpendo.00322.2006
  53. Kim, E. K, Miller, I., Aja, S., Landree, L, E., Pinn, M., McFadden, J., Kuhajda, F. P., Moran, T. H and Ronnett, G. V. (2004) C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamicAMP-activated protein kinase. J. Biol. Chem. 279, 19970-19976. https://doi.org/10.1074/jbc.M402165200
  54. Wu, X., Motoshima, H., Mahadev, K., Stalker, T. J., Scalia, R. and Goldstein, B. J. (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 1355-1363. https://doi.org/10.2337/diabetes.52.6.1355

Cited by

  1. Searching for biomarkers of comorbidities in sera of treated HIV-infected patients by isoelectric focusing vol.36, pp.11-12, 2015, https://doi.org/10.1002/elps.201400535
  2. Tumor bioenergetics: An emerging avenue for cancer metabolism targeted therapy vol.47, pp.3, 2014, https://doi.org/10.5483/BMBRep.2014.47.3.273
  3. Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus vol.62, 2014, https://doi.org/10.1016/j.nbd.2013.08.016
  4. Transcriptomic Changes Triggered by Hypoxia: Evidence for HIF-1α -Independent, [Na+]i/[K+]i-Mediated, Excitation-Transcription Coupling vol.9, pp.11, 2014, https://doi.org/10.1371/journal.pone.0110597
  5. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer vol.1843, pp.2, 2014, https://doi.org/10.1016/j.bbamcr.2013.10.021
  6. Hypoxia Regulates mTORC1-Mediated Keratinocyte Motility and Migration via the AMPK Pathway vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0169155
  7. A transient ischemic environment induces reversible compaction of chromatin vol.16, pp.1, 2015, https://doi.org/10.1186/s13059-015-0802-2
  8. Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0079814
  9. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms vol.111, pp.2, 2016, https://doi.org/10.1007/s00395-016-0531-z
  10. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation vol.46, pp.6, 2013, https://doi.org/10.5483/BMBRep.2013.46.6.121
  11. Vagal nerve stimulation improves mitochondrial dynamicsviaan M3receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia vol.21, pp.1, 2017, https://doi.org/10.1111/jcmm.12938
  12. Regulation of ion channels and transporters by AMP-activated kinase (AMPK) vol.8, pp.1, 2014, https://doi.org/10.4161/chan.27423
  13. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation vol.2015, 2015, https://doi.org/10.1155/2015/794287
  14. Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges vol.48, pp.4, 2016, https://doi.org/10.1093/abbs/gmv128
  15. Somatic mutation patterns and compound response in cancers vol.46, pp.2, 2013, https://doi.org/10.5483/BMBRep.2013.46.2.226
  16. Connexin36 contributes to INS-1E cells survival through modulation of cytokine-induced oxidative stress, ER stress and AMPK activity vol.20, pp.12, 2013, https://doi.org/10.1038/cdd.2013.134
  17. Betulinic Acid Increases eNOS Phosphorylation and NO Synthesis via the Calcium-Signaling Pathway vol.64, pp.4, 2016, https://doi.org/10.1021/acs.jafc.5b05416
  18. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury vol.1842, pp.11, 2014, https://doi.org/10.1016/j.bbadis.2014.09.001