
Honam Mathematical J. 34 (2012), No. 3, pp. 451–465
http://dx.doi.org/10.5831/HMJ.2012.34.3.451

COMPARISON OF CONTINUITIES IN DIGITAL

TOPOLOGY

Sik Lee and Sang-Eon Han

Abstract. Since there are several kinds of continuities of maps
between digital spaces, the paper compares them, which can play
an important role in digital topology and discrete geometry.

1. Introduction

Let N, Z and Zn be the sets of natural numbers, integers and points
in the Euclidean nD space with integer coordinates, respectively. Digital
topology including Khalimsky topology has been often used for studying
various properties of objects in Zn [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19].

While many works in digital topology deal objects in Zn with various
types of topological structures and digital connectivity (or k-adjacency
relations of Zn), Khalimsky topology recognizes objects in Zn as Khal-
imsky nD subspaces. These approaches play important roles in com-
puter graphics, image synthesis, image analysis, mathematical morphol-
ogy and so forth.

In this paper we study an object in Zn by using special kinds of
neighborhoods induced from both the Khalimsky topological structure
and graph theoretical tools. To be specific, for a set X ⊂ Zn we
study the subspace (X,Tn

X) of the Khalimsky nD space (Zn, Tn), n ≥ 1
[7, 10, 14, 15] and further, consider the subspace (X,Tn

X) with one of
the k-adjacency relations of Zn, denoted by Xn,k. In order to study
Xn,k := (X, k, Tn

X), up to now several kinds of continuities are used,
e.g. Khalimsky continuity combined with digital continuity [7], briefly
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called KD-(k0, k1)-continuity (see Definition 4), and (k0, k1)-continuity
(see Definition 5). Even though the k-adjacency of X ⊂ Zn is not di-
rectly related to the Khalimsky topology [3], the notion gives us powerful
benefits in studying objects X ⊂ Zn. The papers [4, 7, 10, 14] discusses
limitations of a Khalimsky continuous map. More precisely, a Khalim-
sky continuous map only partially preserves digital connectivity and a
geometric transformation. Owing to this shortage, several continuities of
maps between Khalimsky spaces were developed [4, 7, 10, 15]. Let DTC
be the category of digital images and digitally (k0, k1)-continuous maps,
KDTC the category of spaces Xn,k and KD-(k0, k1)-continuous maps,
and CTC the category of spaces Xn,k and (k0, k1)-continuous maps.

As mentioned above, a Khalimsky continuous map f : Xn0,k0 →
Yn1,k1 need not preserve the k0-connectedness of Xn0,k0 into the k1-
connectedness of Yn1,k1 (see Remark 3.2). Besides, the connectedness
in Khalimsky topology is different from the k-connectedness in digital
topology [3]. These are the reasons why we study a set X ⊂ Zn in
KDTC and CTC. Thus, by using these categories, we need to study
objects in Zn from the viewpoints of DTC, KDTC, and CTC. Each of
these categories has intrinsic benefits for studying objects in Zn from
the viewpoint of digital topology.

This paper is organized as follows. Section 2 provides basic notions.
Section 3 compares several continuities in digital topology and investi-
gates their various properties which are extensions of the earlier papers
in [7, 10]. Section 4 provides some remarks and further works.

2. Preliminaries

A set X ⊂ Zn with digital connectivity (or k-adjacency relations of
Zn), denoted by (X, k) and called a digital image, is usually considered
in a quadruple (Zn, k, k̄,X), where n ∈ N, k represents an adjacency
relation for X, and k̄ represents an adjacency relation for Zn \X [16, 18,
19]. Thus, we can consider a set X in (Zn, k, 2n,X) or (Zn, 2n, 3n−1, X)
with k 6= 2n except (Z, 2, 2, X) owing to the digital connectivity paradox
related to the digital Jordan curve theorem in [18]. However, in this
paper we are not concerned with adjacencies among n-xels of Zn \X.

As a generalization of the commonly used 4- and 8-adjacency of Z2

and further, 6-, 18-, and 26-adjacency of Z3 in [18, 19], k-adjacency
relations of Zn have been used for studying a set X ⊂ Zn, n ≥ 1 [7] (see
also [5, 6, 7, 8, 9, 10, 11]): Let m be a positive integer with 1 ≤ m ≤ n.
Two distinct points p = (pi)i∈[1,n]Z and q = (qi)i∈[1,n]Z ∈ Zn are called
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k(m,n)(briefly, k)-adjacent according to m if
• there are at most m indices i such that |pi − qi| = 1; and
• for all other indices i such that |pi − qi| 6= 1, pi = qi.
In this operator k := k(m,n) is the number of points q which are k-
adjacent to a given point p according to the numbers m and n in N,
where “ :=” means equal by definition. Indeed, this k(m,n)-adjacency
is another presentation of the k-adjacency of [5, 8]. Consequently, this
operator leads to the representation of the k-adjacency relations of Zn

[9] (for more details, see [10]):

k := k(m,n) =

n−1∑
i=n−m

2n−iCn
i , (2.1)

where Cn
i = n!

(n−i)! i! .

A set X ⊂ Zn can be considered as a subspace (X,Tn
X) induced

from the Khalimsky nD space (Zn, Tn) in [16]. Indeed, Khalimsky line
topology on Z is induced from the subbase {[2n − 1, 2n + 1]Z|n ∈ Z}
[16]. Then we use the notation (Z, T ). For {a, b} ⊂ Z with a � b,
[a, b]Z = {a ≤ n ≤ b|n ∈ Z} is called a digital interval [2]. Besides,
if [a, b]Z is considered as a subspace ([a, b]Z, T[a,b]Z) induced from the
Khalimsky line space (Z, T ), then it is called a Khalimsky interval. In
this paper, we denote it [a, b]Z instead of ([a, b]Z, T[a,b]Z) if there is no
confusion. Furthermore, the product topology on Zn is derived from
the Khalimsky line topology on Z, n ≥ 2. Then the topology on Zn is
called the Khalimsky (product) topology on Zn and we use the notation
(Zn, Tn) called the Khalimsky nD space [16]. In addition, a point x =
(xi)i∈[1,n]Z ∈ Zn is open if all coordinates are odd, and closed if each
of the coordinates is even [16]. These points are called pure and the
other points in Zn is called mixed. In all subspaces of (Zn, Tn), n ≥ 2,
of Figures 1-3 the symbols �, • and a jumbo dot mean a pure closed
point, a mixed point, and a pure open point, respectively.

3. Comparison of continuities in digital topology

For a set X ⊂ Zn let us consider a subspace (X,Tn
X) induced from

the Khalimsky nD space (Zn, Tn). Furthermore, it is meaningful to
consider (X,Tn

X) with k-adjacency of Zn. This approach makes helpful
to find some important information of (X,Tn

X) in digital topology such
as various continuities, homeomorphisms and so forth.
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Definition 1. [7] Considering a topological space (X,Tn
X) with k-

adjacency, we call it a space with k-adjacency (or a space) and we denote
it (X, k, Tn

X), briefly Xn,k.

In order to find some important features of Xn,k and to establish
several kinds of mathematical categories, we need to recall terminology
as follows. For a set with k-adjacency (or a digital image) (X, k) in Zn,
two points x, y ∈ X with x 6= y are called k-connected if there is a k-path
f : [0,m]Z → X whose image is an injective sequence (xi)i∈[0,m]Z ⊂ X
from the set of points {f(0) = x0 = x, f(1) = x1, · · · , f(m) = xm = y}
such that xi and xi+1 are k-adjacent, i ∈ [0,m− 1]Z. The number m is
called the length of this k-path [19]. For an adjacency relation k of (2.1),
a simple k-path in X ⊂ Zn is a sequence (xi)i∈[0,m]Z ⊂ X such that xi
and xj are k-adjacent if and only if either j = i + 1 or i = j + 1 [18].

For a space Xn,k := (X, k, Tn
X) we consider the notions of digital and

Khalimsky topological k-neighborhoods for developing the notions of
KD-(k0, k1)- and (k0, k1)-continuities of Definitions 4 and 5, as follows.

Definition 2. [7](see also [4, 10]) For Xn,k := (X, k, Tn
X), x, y ∈ X,

and ε ∈ N, we consider the following.
(1) A subset V of X is called a neighborhood of x if there exists an

open set Ox ∈ Tn
X such that x ∈ Ox ⊆ V.

(2) By Nk(x, ε) we denote the subset of X

{y ∈ X : lk(x, y) ≤ ε} ∪ {x}, ε ∈ N,

where lk(x, y) is the length of a shortest simple k-path from x to y in X
[5]. Besides, we say that lk(x, y) =∞ if there is no k-path from x to y.
The set Nk(x, ε) is called a digital k-neighborhood of x with radius ε.

(3) If the above set Nk(x, ε) is a Khalimsky topological neighborhood
of x in (X,Tn

X), then this set is called a k-neighborhood of x with radius
ε ∈ N. In this paper, we use the notation N∗k (x, ε).

By Definition 2(2), if for a digital image (X, k), a point x ∈ X is not
k-connected with any point in X, then we observe Nk(x, ε) = {x} for
any ε ∈ N.

In Xn,k, we obviously obtain the following because N3n−1(x, 1) always
contains an open set Ox ∈ Tn

X satisfying x ∈ Ox ⊂ N3n−1(x, 1).

Proposition 3.1. For each point x ∈ Xn,k, Nk(x, 1) = N∗k (x, 1) if
k = 3n − 1, n ∈ N.

By the use of the digital k-neighborhood of Definition 2 (2), motivated
by the digital continuity in [2, 19], the digital (k0, k1)-continuity has been
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represented mathematically because any point in (X, k) has Nk(x, 1) in
X.

Definition 3. [5] (see also [8]) Let (X, k0) and (Y, k1) be digital
images in Zn0 and Zn1 , respectively. We say that a function f : X → Y
is digitally (k0, k1)-continuous if f(Nk0(x, 1)) ⊂ Nk1(f(x), 1).

Let us consider a digital topological category, denoted by DTC, con-
sisting of two things [5] (see also [7]):
• A set of objects (X, k) in Zn;
• DTC has digitally (k0, k1)-continuous maps as morphisms.

For an adjacency relation k, we recall that a simple closed k-curve
with l elements in X ⊂ Zn is the image of a digitally (2, k)-continuous
function f : [0, l−1]Z → X such that f(i) and f(j) are k-adjacent if and

only if i = j ± 1(mod l) [18] and is denoted by SCn,l
k which is assumed

to be a sequence (ci)i∈[0,l−1]Z , where f(i) = ci [5].

For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h :
(X, k0) → (Y, k1) is called a (k0, k1)-homeomorphism if h is (k0, k1)-
continuous and bijective and further, h−1 : Y → X is (k1, k0)-continuous
in [2]. Then we use the notation X ≈(k0,k1) Y . If n0 = n1 and k0 = k1,
then we call it a k0-homeomorphism [2]. Since a digital image can be
recognized to be both a digital k-graph and a simplicial complex in [6],
we may use a (k0, k1)-isomorphism instead of a (k0, k1)-homeomorphism
in digital topology [8].

Remark 3.2. [7] (see also [4, 10]) A Khalimsky continuous map
f : Xn0,k0 → Yn1,k1 need not preserve the k0-connectedness into the
k1-connectedness.

Since the preservation of the k0-connectedness of Xn0,k0 into the k1-
connectedness of Yn1,k1 is so meaningful for the study of some objects in
lattice based approach, we need the following notion.

Definition 4. [7] (see also [10]) A function f : Xn0,k0 → Yn1,k1 is
said to be Khalimsky continuous with digital (k0, k1)-continuity (briefly,
KD-(k0, k1)-continuous) at a point x ∈ Xn0,k0 if

(1) f is Khalimsky continuous at the point x and
(2) f is digitally (k0, k1)-continuous at the point x ∈ Xn0,k0 .
Furthermore, we say that a map f : Xn0,k0 → Yn1,k1 is KD-(k0, k1)-

continuous if it is KD-(k0, k1)-continuous at every point x ∈ Xn0,k0 .

In Definition 4, if n0 = n1 and k0 = k1, then we call the map f a KD-
k0-continuous map. By Remark 3.2, the current KD-(k0, k1)-continuity
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plays an important role in studying objects X ⊂ Zn from the viewpoint
of digital topology. Reminding Remark 3.2, we now need to further
explain the reason why the KD-(k0, k1)-continuity is meaningful for the
study of a Khalimsky topological space (see Remarks 3.2 and 3.3, and
Theorem 3.4).

The Khalimsky continuity of Definition 4(1) means the general topo-
logical continuity between Khalimsky topological spaces. In general,
we can observe that none of the conditions (1) and (2) of Definition 4
implies the other (see Remark 3.3), as follows.

Remark 3.3. [7, 10, 14, 15] None of Khalimsky continuity and dig-
ital (k0, k1)-continuity of Definition 4 implies the other. Precisely, by
Remark 3.2, it turns out that the condition (1) of Definition 4 need
not lead to the condition (2) of Definition 4. Meanwhile, in general,
since Nk(x, ε) is different from a Khalimsky topological k-neighborhood
N∗k (x, ε) or an open set in (X,Tn

X), the condition (2) of Definition 4 need
not imply the condition (1) of Definition 4.

For a space Xn,k and its subspace An,k, we call ((X,A), k, Tn
(X,A)) a

space pair with k-adjacency, denoted by (X,A)n,k. For two space pairs
(X,A)n0,k0 and (Y,B)n1,k1 , we say that f : (X,A)n0,k0 → (Y,B)n1,k1 is
KD-(k0, k1)-continuous if f : Xn0,k0 → Yn1,k1 is KD-(k0, k1)-continuous
and f(An0,k0) ⊂ Bn1,k1 [7].

The spaces (Z, T ) and (Zn, Tn) are connected in Khalimsky product
topology. Furthermore, in (Z, T ), 2-connectedness is clearly equivalent
to connectedness. Let us now examine the general cases as follows.

Theorem 3.4. For Xn,k, n ≥ 2, we obtain the following.

(a) k-connectedness implies connectedness if k = 2n.

(b) The assertion of (a) need not hold if k 6= 2n.

(c) Connectedness implies k-connectedness if k = 3n − 1.

(d) The assertion of (c) need not hold if k 6= 3n − 1.

Proof: (a) Consider any points x, y ∈ X such that x and y are 2n-
connected with x 6= y (for instance, see the points x, y, z, w of X in
Figure 1(a)). Then there is a sequence (xi)i∈[0,m]Z ⊂ X such that x0 = x,
xm = y, and both of xi and xi+1 are 2n-adjacent, i ∈ [0,m− 1]Z. Then,
for any i ∈ [0,m− 1]Z the two points xi and xi+1 are always in a same
component of the Khalimsky nD space (see Figure 1(a)). Thus Xn,k

cannot be a union of non-empty open subsets A and B of Xn,k such
that A ∩B = ∅.
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(b) In Z2, consider the topological space (W,T 2
W ), where W = {w1, w2,

w3, w4} ⊂ Z2 in Figure 1(d). While the points w2 and w3 are 8-
connected, these points are in different components {w1, w2} and {w3, w4}
because {w1, w2} and {w3, w4} are open sets in T 2

W .
In Z3, consider Y := {yi}i∈[0,3]Z in Figure 1(b). While Y is 18-

connected, it is not connected in (Y, T 2
Y ) because Y consists of two com-

ponents {y0} and {y1, y2, y3}.
In Z3, consider another space Z := {zi}i∈[0,3]Z in Figure 1(c). While Z is
26-connected, it is not connected because Z consists of two components
{z0} and {z1, z2, z3}.

In general, in Zn, n ≥ 4, by the same method as the above 2D- and
3D-cases, we can prove that a k-connected space Xn,k, k 6= 2n, need not
be connected in Khalimsky product topology.

(c) Due to the Khalimsky product topology of Xn,k, connectedness
of Xn,k obviously implies k-connectedness of Xn,k if k = 3n − 1.

(d) If k 6= 3n−1, then connectedness need not imply k-connectedness.
For instance, consider the set D := {d0 = (0, 0, 0), d1 = (1, 1, 1)} with
(D,T 3

D). While D is connected because T 3
D = {∅, D, {d1}}, it cannot be

18-connected. Furthermore, in Zn, we can consider a general case of the
above mentioned set D with (D,Tn

D), n ≥ 3. �
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Figure 1. Comparison connectedness with k-connectedness.
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By Remarks 3.2 and 3.3, and Theorem 3.4, we observe that KD-
(k0, k1)-continuity gives some benefits in studying a space Xn,k. Thus
let us consider a KD-topological category, denoted by KDTC, consisting
of two things [7, 10]:
• A set of objects Xn,k;
• KDTC has KD-(k0, k1)-continuous maps as morphisms.

Even though KDTC is so useful for studying Xn,k, it need not be
sufficient in digital topology. For instance, consider two spaces (Xi)2,8,
i ∈ {1, 2}, where Xi is considered in Figure 3(a). Then, while a map
f : X1 → X2 given by f(xi) = ci, i ∈ [0, 3]Z is digitally 8-continuous, f
cannot be KD-8-continuous at two points x0 and x2.
Furthermore, consider the spaces (Zi)3,26, i ∈ {1, 2}, where the set Zi is
considered in Figure 3(c). Then, while the map h : (Z2)3,26 → (Z1)3,26
for which h(wi) = zi, i ∈ [0, 3]Z, is digitally 26-continuous, it cannot
be a KD-26-continuous map at two points w0 and w2. These examples
show the need of another continuity in digital topology. Thus we estab-
lish another continuity which is different from KD-(k0, k1)-continuity as
follows.

Definition 5. [7] (see also [12, 15]) For two spaces Xn0,k0 := X and
Yn1,k1 := Y a function f : X → Y is said to be (k0, k1)-continuous at a
point x ∈ X if f(N∗k0(x, r)) ⊂ N∗k1(f(x), s), where the number r is the
least element of N such that N∗k0(x, r) contains an open set including the
point x and s is the least element of N such that N∗k1(f(x), s) contains
an open set including the point f(x).
Furthermore, we say that a map f : X → Y is (k0, k1)-continuous if the
map f is (k0, k1)-continuous at every point x ∈ X.

By Proposition 3.1, for any point x ∈ Xn,k, if k = 3n − 1, then we
obtain the following.

Corollary 3.5. If ki = 3ni − 1, i ∈ {1, 2}, then (k0, k1)-continuity is
equivalent to digital (k0, k1)-continuity.

By the similar method as Remark 3.3, we obtain the following.

Remark 3.6. [7] (see also [4, 14, 15]) None of (k0, k1)-continuity and
Khalimsky continuity implies the other.

We observe some properties of (k0, k1)-continuity:

Remark 3.7. (1) We observe that the map f ± g : Xn0,k0 → Yn1,k1

need not be a (k0, k1)-continuous map, where the componentwise ‘±’
operations are typically determined because f(x) and g(x) are points
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in Zn1 . Besides, we observe that the composite property of (k0, k1)-
continuous maps holds.

(2) We observe that (k0, k1)-continuity need not have the restriction
property. For instance, consider a map f : X ′ → Y := {yi}i∈[0,3]Z in
Figure 2 given by
f({x0, x1, x2, x3, x6, d1, d2}) = {y0}, f(x4) = y2, f(x5) = y1, and
f({x7, x8}) = {y3},
where X ′ = X ∪ D, X = {xi}i∈[0,8]Z and D = {d1, d2}. Consider X ′2,4
and Y2,4. Then f : X ′2,4 → Y2,4 is a (4, 4)-continuous map. Let us now

consider a restriction map f on X2,4, briefly f |X2,4 . Then, since the
smallest open set containing the point x0 is the set {xi}i∈[0,5]Z , there is
no N∗4 (x0, ε) for any ε ∈ N because X2,4 is not 4-connected. Thus f |X2,4

cannot be (4, 4)-continuous.

Theorem 3.8. None of KD-(k0, k1)-continuity and (k0, k1)-continuity
implies the other. In other words,
(1) KD-(k0, k1)-continuity need not imply (k0, k1)-continuity.

(2) (k0, k1)-continuity need not lead to KD-(k0, k1)-continuity.

Proof: (1) Consider the restriction map f |X2,4 in Remark 3.7. While
the map f |X2,4 : X2,4 → Y2,4 is KD-(4, 4)-continuous, it cannot be (4, 4)-
continuous (see Remark 3.6).

(2) (a) Consider a map f : A2,4 → Y given by f(a1) = 1 and f(a2) =
2, where A = {a1 = (0, 1), a2 = (1, 1)} and Y = {1, 2} ⊂ Z. Then,
while the map f is (4, 2)-continuous, it cannot be Khalimsky continuous
at the point a1 because {1} ∈ TY and {a1} /∈ T 2

A. Thus f cannot be
KD-(4, 2)-continuous.

(b) Consider a map f : (X1)2,8 → (X2)2,8 given by f(xi) = ci, i ∈
[0, 3]Z, where Xj , j ∈ {1, 2}, is the set in Figure 3(a). Then, while the
map f is 8-continuous, it cannot be KD-8-continuous at the points x0
and x2 because the smallest open sets containing the points x0 and x2
are the sets {x0, x1, x3} and {x1, x2, x3}, respectively. �

In view of Theorem 3.8, we now have a mathematical category, de-
noted by CTC, consisting of two things:
• A set of objects Xn,k;
• CTC has (k0, k1)-continuous maps as morphisms.

Let us now establish several homeomorphisms in digital topology.

Definition 6. [7] (see also [10]) In KDTC, a function f : Xn0,k0 →
Yn1,k1 is said to be a KD-(k0, k1)-homeomorphism if

(1) the map f is bijective, and
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Figure 2. Non-restriction property of (k0, k1)-continuity.

(2) the map f is a KD-(k0, k1)-continuous map and further, f−1 is a
KD-(k1, k0)-continuous map.
In this case we say that Xn0,k0 is KD-(k0, k1)-homeomorphic to Yn1,k1 .

We now say that properties which when possessed by a space in Zn

are also possessed by (k0, k1)-, and KD-(k0, k1)-homeomorphisms are
called (k0, k1)-, and KD-(k0, k1)-homeomorphic properties, respectively.

Example 3.9. (1) In KDTC, let us consider two sets X1 := {xi}i∈[0,3]Z
and X2 := {ci}i∈[0,3]Z in Figure 3(a). Then

T 2
X1

= {∅, X1, {x1}, {x3}, {x0, x1, x3}, {x1, x2, x3}, {x1, x3}}
and T 2

X2
is essential to the discrete topological structure of X2. While

the two digital images (X1, 8) and (X2, 8) are 8-isomorphic to each other
in DTC, (X1)2,8 and (X2)2,8 cannot be KD-8-homeomorphic to each
other. To be specific, let us consider a map h : X2 → X1 given by
h(ci) = xi, i ∈ [0, 3]Z. Then, while h is a KD-8-continuous bijection,
h−1 cannot be KD-8-continuous at the points x0 and x2.

(2) Consider three sets Y1 := {xi}i∈[0,5]Z , Y2 := {yi}i∈[0,5]Z , and
Y3 := {ci}i∈[0,5]Z in Figure 3(b). While the digital image (Yi, 18) is
18-isomorphic to (Yj , 18) in DTC, where i, j ∈ {1, 2, 3}, (Yi)3,18 can-
not be KD-18-homeomorphic to (Yj)3,18 if i 6= j. To be specific, let us
examine two points x2 and x4 in (Y1)3,18. While the point xi has the
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smallest open set Oxi = N∗18(xi, 2) in (Y1)3,18, where i ∈ {2, 4} and Oxi

is an open set containing the point xi, the other point xi has the small-
est open set Oxi = N∗18(xi, 1), i ∈ {0, 1, 3, 5}. Meanwhile, in (Y2)3,18,
the point y0 has the smallest open set Oy0 containing the point y0 such
that Oy0 = N∗18(y0, 2), and the other point yi has the smallest open set
Oyi containing the point yi such that Oyi = N∗18(yi, 1), i ∈ {1, 2, 3, 4, 5}.
Thus h : (Y2)3,18 → (Y1)3,18 given by h(yi) = xi+2(mod 6), i ∈ [0, 5]Z, is

a KD-18-continuous bijection, h−1 cannot be KD-18-continuous, which
means that there is no KD-18-homeomorphism between (Y1)3,18 and
(Y2)3,18.
Besides, since (Y3)3,18 is essential to the discrete topological space of Y3,
neither (Y1)3,18 nor (Y2)3,18 is KD-18-homeomorphic to (Y3)3,18.

(3) Consider two sets Z1 := {zi}i∈[0,3]Z and Z2 := {wi}i∈[0,3]Z in
Figure 3(c). While the two digital images (Z1, 26) and (Z2, 26) are 26-
isomorphic in DTC, (Z1)3,26 and (Z2)3,26 cannot be KD-26-homeomorphic
to each other in KDTC. To be specific, let us consider a map h :
(Z1)3,26 → (Z2)3,26 given by h(zi) = wi, i ∈ [0, 3]Z. While T 3

Z1
is es-

sential to the discrete topological structure of Z1,
T 3
Z2

= {∅, Z2, {w1}, {w3}, {w1, w2, w3}, {w0, w1, w3}, {w1, w3}}.
Thus h is a KD-26-continuous bijection, h−1 cannot be KD-26-continuous
at the two points w0 and w2.

(0, 1, 1)


(2, 1, 3)


5

x


4

x


3

x
2


x


1

x


0

x


1

w


2

w


3

w


(0, 0, 0)


(2, 2)


(0, 0)


(0, 1)


(0, -1)


X
1

X
2


Y
1
 Y
2


Z
1
 Z
2


5

y


4

y


3

y


2

y


1

y


0

y


3

x


2

x


0

x


1

x
 3


c


0

c


1

c


2

c


3

z


2

z


0

z


1

z


0

w


Y
3


5

c


4

c


3

c
2


c


1

c


0

c


(a)


(b)


(c)


Figure 3. Various spaces related to both k-isomorphism
and KD-k-homeomorphism partially used in [7, 10].
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In view of Example 3.9, we obtain the following.

Theorem 3.10. (1) In KDTC, there are two types of simple closed 8-
curves with four elements in (Z2, T 2) up to KD-8-homeomorphism such
as (X1)2,8 and (X2)2,8 in Figure 3(a).

(2) In KDTC, there are three types of simple closed 18-curves with
six elements in (2×2×1)-form of (Z3, T 3) up to KD-18-homeomorphism
such as (Y1)3,6, (Y2)3,6, and (Y3)3,6 in Figure 3(b).

(3) In KDTC, there are two types of simple closed 26-curves with four
elements in (2 × 2 × 2)-form of (Z3, T 3) up to KD-26-homeomorphism
such as (Zi)3,26 in Figure 3(c), i ∈ {1, 2}.

(4) In KDTC, as a generalization of both (Xi)2,8 and (Zi)3,26, i ∈
{1, 2}, in Figure 3, we observe that there are two types of simple closed
(3n − 1)-curves with four elements in (2× · · · × 2)︸ ︷︷ ︸

n−times

-form of (Zn, Tn) up

to KD-(3n − 1)-homeomorphism, n ≥ 4.

Unlike various properties of KD-(k0, k1)-continuity above mentioned,
(k0, k1)-continuity has some intrinsic features which are similar to those
of digital (k0, k1)-continuity. Thus let us now investigate various prop-
erties of (k0, k1)-continuity in CTC.

Definition 7. In CTC, for two spaces Xn0,k0 and Yn1,k1 , a function
f : Xn0,k0 → Yn1,k1 is said to be a (k0, k1)-homeomorphism if

(1) the map f is bijective, and
(2) the map f is a (k0, k1)-continuous map and further, f−1 is a

(k1, k0)-continuous map.
In this case we say that Xn0,k0 is (k0, k1)-homeomorphic to Yn1,k1 .

Obviously, in CTC, k-connectedness is k-homeomorphic property.
Unlike the KD-k-homeomorphic properties of Example 3.9, a (k0, k1)-
homeomorphism has its intrinsic features as follows.

Theorem 3.11. In CTC, let us consider the sets in Figure 3 (see
also Example 3.9). Then, we obtain the following.

(1) (X1)2,8 is 8-homeomorphic to (X2)2,8.
(2) (Yi)3,18 is not 18-homeomorphic to (Yj)3,18 if i 6= j and i, j ∈

{1, 2, 3}.
(3) (Z1)3,26 is 26-homeomorphic to (Z2)3,26.

Proof: The proofs of (1) [13] and (3) are trivial.
(2) In (Y1)3,18, since the smallest open set containing the point x2 is

the set {x0, x1, x2, x3}, we obtain that N∗18(x2, 2) = Y1−{x5}. Similarly,
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we obtain the smallest 18-neighborhood of x4, denoted by N∗18(x4, 2) =
Y1 − {x1}.
Meanwhile, in (Y2)3,18, each point yi ∈ Y2, i ∈ [1, 4]Z, has N∗18(yi, 1)
and the point y0 has the smallest 18-neighborhood of y0, N

∗
18(y0, 2) =

Y2 − {y3}. Thus there is no 18-homeomorphism h : (Y1)3,18 → (Y2)3,18.
Next, since the Khalimsky topology of (Y3)3,18 is essential to the dis-

crete topology of Y3, neither (Y1)3,18 nor (Y2)3,18 can be 18-homeomorphic
to (Y3)3,18. �

By Theorem 3.11, we see that CTC gives some benefits in studying
a space Xn,k from the viewpoint of digital topology. Besides, we obtain
the following.

Remark 3.12. (1) In CTC, there is the only simple closed 8-curves
with four elements in (Z2, T 2) up to 8-homeomorphism such as (X1)2,8
in Theorem 3.11.

(2) In CTC, there are three types of simple closed 18-curves with 6
elements in (2× 2× 1)-form of (Z3, T 3) up to 18-homeomorphism such
as (Yi)3,18, i ∈ {1, 2, 3}, in Theorem 3.11.

(3) In CTC, there is the only simple closed 26-curves with four ele-
ments in (2× 2× 2)-form of (Z3, T 3) up to 26-homeomorphism such as
(Z1)3,26 in Theorem 3.11.

(4) In CTC, as a generalization of the cases in (1) and (3) above, we
observe that there is a simple closed (3n − 1)-curves with four elements
in (2× · · · × 2)︸ ︷︷ ︸

n−times

-form of (Zn, Tn) up to (3n− 1)-homeomorphism, n ≥ 4.

Remark 3.13. In view of Theorems 3.10 and 3.11, we observe that
(3n − 1)-continuity in CTC is not equivalent to KD-(3n − 1)-continuity.

4. Concluding remark and further works

We have investigated properties of several continuities and homeo-
morphisms in digital topology which can be used in studying mathe-
matical morphology and the development of covering theory in CTC
and KDTC as a further work.
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