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COUNTING PROBLEMS IN GENERALIZED PAPER

FOLDING SEQUENCES

Junghee Yun† and Nahmwoo Hahm‡

Abstract. In this paper, we discuss numbers of downwards and
upwards in generalized paper folding sequences. We compute the
exact number of downwards and upwards in Rn

p and (RpRq)n by
using the properties of recursive sequences where n, p and q are
natural numbers with p ≥ 2 and q ≥ 2.

1. Introduction and Preliminaries

When we fold a sheet of paper and unfold it, the paper has some
creases. Dekking [4] used 0 for a crease that makes the paper upward
and 1 for a crease that makes the paper downward. Note that a paper
folding sequence is the sequence of 0s and 1s obtained by unfolding a
sheet of paper which has been folded many times.
Paper folding sequences have been studied extensively by Allouche, Bates,
Bunder, Tognetti, France and Poorten in [1, 2, 5] since Davis and Knuth
introduced its concept in [3]. Dekking [4] showed how the automatic
structure of the paper folding sequences lead to self-similarity of the
curves. Lee, Kim and Choi [6] showed the trace of paper folding se-
quences using (0, 1) codes and (0, 1) matrices. In this paper, we intro-
duce generalized paper folding sequences and compute the exact number
of 0s and 1s in generalized paper folding sequences.
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When we fold a sheet of paper, we may fold it left over right or right
over left. We use R when we fold a sheet of paper left over right and L
when we fold a sheet of paper right over left. When we fold a sheet of
paper left over right and rotate it 180◦ angles, the creases are the same
as that of the paper folding right over left.

Let p, q, n ∈ N with p ≥ 2 and q ≥ 2. If we fold a sheet of paper in p left
over right, we get a generalized paper folding sequence and denote it by
Rp. If we iterate Rp process n times, then we get another generalized
paper folding sequence and denote it by Rn

p . Similarly, if we fold a sheet
of paper in p left over right and then fold the result in q left over right,
we get a paper folding sequence and denote it by RpRq. If we iterate
RpRq process n times, then we get another generalized paper folding
sequence and denote it by (RpRq)

n.

Example 1.1. Some examples of generalized paper folding sequences
are given as follows :

(1) R3
4 : 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0

0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1

1 1 1 1 0 0 0 1 1 1 1

(2) (R2R3)
2 : 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1

0 0 0 1 1 1 0 0 1 1 1

(3) (R3R2)
2 : 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1

0 0 1 0 0 1 1 1 0 1 1

Let X be a paper folding sequence. We define Xc the paper folding
sequence obtained by reversing the order and swapping 0s and 1s in X.
|X| denotes the number of all 0s and 1s in X. |X|0 and |X|1 denote the
number of all 0s in X and all 1s in X, respectively. The following lemma
can be easily obtained by the definitions of |X|, |X|0, |X|1 and Xc.

Lemma 1.2. Let X be a paper folding sequence. Then we have

(1) |X| = |X|0 + |X|1
(2) |Xc|0 = |X|1
(3) |Xc|1 = |X|0
(4) |Xc| = |X|.
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2. Number of 0s and 1s in Rn
p

Davis and Knuth [3] proved the following theorem and it provided
us with impetus to probe the problems related to number of downwards
and upwards in generalized paper folding sequences.

Theorem 2.1. Let p ∈ N with p ≥ 2. If Rp and X are paper folding
sequences, then

(2.1) RpX =

{
(Xc 1X 1Xc 1X 1 · · · 1Xc 1X) if p is even

(X 1Xc 1X 1Xc 1 · · · 1Xc 1X) if p is odd.

First, we compute the number of 0s and 1s in Rn
p using Theorem 2.1

and the properties of a recursive sequence.

Theorem 2.2. If p is an even number with p ≥ 2 and n ∈ N, then

(2.2) |Rn
p |0 =

1

2
(pn − p) and |Rn

p |1 =
1

2
(pn + p− 2).

Proof. Since p is even and Rn
p = RpR

n−1
p , Theorem 2.1 gives

(2.3) Rn
p =

(
(Rn−1

p )c 1 Rn−1
p 1 · · · 1 (Rn−1

p )c 1 Rn−1
p

)
.

Note that (Rn−1
p )c and Rn−1

p appear p
2 times and p

2 times in (2.3), re-
spectively. In addition, 1 appears p− 1 times in (2.3).
By (2.3) and Lemma 1.2, we have

|Rn
p | =

p

2
|(Rn−1

p )c|+ p

2
|Rn−1

p |+ (p− 1)

=
p

2
|Rn−1

p |+ p

2
|Rn−1

p |+ (p− 1)(2.4)

= p|Rn−1
p |+ (p− 1).

By adding 1 on both sides of (2.4), we get

|Rn
p |+ 1 = p|Rn−1

p |+ p

= p(|Rn−1
p |+ 1)

= p2(|Rn−2
p |+ 1)(2.5)

= · · ·
= pn(|R0

p|+ 1)

= pn,

since |R0
p| = 0. Thus

(2.6) |Rn
p | = pn − 1.
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Now, we compute the number of 0s in Rn
p . By (2.4), (2.6) and Lemma

1.2, we get

|Rn
p |0 =

p

2
|(Rn−1

p )c|0 +
p

2
|Rn−1

p |0

=
p

2
|Rn−1

p |1 +
p

2
|Rn−1

p |0

=
p

2
|Rn−1

p |(2.7)

=
p

2
(pn−1 − 1)

=
1

2
(pn − p).

Since the number of 1s can be computed by subtracting the number of
0s from the total number of creases, we have

|Rn
p |1 = |Rn

p | − |Rn
p |0

= (pn − 1)− 1

2
(pn − p)(2.8)

=
1

2
(pn + p− 2).

Thus we complete the proof.

Now, we compute the number of 0s and 1s in Rn
p when p is odd with

p ≥ 3. In this case, we use a different property of a recursive sequence
that is not used in Theorem 2.2.

Theorem 2.3. If p is an odd number with p ≥ 3 and n ∈ N, then

(2.9) |Rn
p |0 =

1

2
(pn − np + n− 1) and |Rn

p |1 =
1

2
(pn + np− n− 1).

Proof. Since p is odd and Rn
p = RpR

n−1
p , Theorem 2.1 gives

(2.10) Rn
p =

(
Rn−1

p 1 (Rn−1
p )c 1 Rn−1

p 1 · · · 1 (Rn−1
p )c 1 Rn−1

p

)
.

Note that (Rn−1
p )c and Rn−1

p appear p−1
2 times and p+1

2 times in (2.10),
respectively. In addition, 1 appears p− 1 times in (2.10).
By (2.10) and Lemma 1.2, we have

|Rn
p | =

p− 1

2
|(Rn−1

p )c|+ p + 1

2
|Rn−1

p |+ (p− 1)

=
p− 1

2
|Rn−1

p |+ p + 1

2
|Rn−1

p |+ (p− 1)(2.11)

= p|Rn−1
p |+ (p− 1).
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By adding 1 on both sides of (2.11), we get

|Rn
p |+ 1 = p|Rn−1

p |+ p

= p(|Rn−1
p |+ 1)

= p2(|Rn−2
p |+ 1)(2.12)

= · · ·
= pn(|R0

p|+ 1)

= pn,

since |R0
p| = 0. Thus

(2.13) |Rn
p | = pn − 1.

Now, we compute the number of 0s in Rn
p . By (2.11), (2.13) and Lemma

1.2, we get

|Rn
p |0 =

p− 1

2
|(Rn−1

p )c|0 +
p + 1

2
|Rn−1

p |0

=
p− 1

2
|Rn−1

p |1 +
p + 1

2
|Rn−1

p |0

= |Rn−1
p |0 +

p− 1

2

(
|Rn−1

p |1 + |Rn−1
p |0

)
(2.14)

= |Rn−1
p |0 +

p− 1

2
|Rn−1

p |

= |Rn−1
p |0 +

p− 1

2
(pn−1 − 1)

= |Rn−1
p |0 +

1

2
(pn − pn−1 − p + 1).

Recursively, we obtain from (2.14) that

|Rn
p |0 − |Rn−1

p |0 =
1

2
(pn − pn−1 − p + 1)

|Rn−1
p |0 − |Rn−2

p |0 =
1

2
(pn−1 − pn−2 − p + 1)

...(2.15)

|R1
p|0 − |R0

p|0 =
1

2
(p1 − p0 − p + 1).

Note that |R0
p|0 = 0. By adding all left terms and all right terms of

(2.15), respectively, we get

(2.16) |Rn
p |0 = |Rn

p |0 − |R0
p|0 =

1

2
(pn − np + n− 1).



428 Junghee Yun and Nahmwoo Hahm

Since the number of 1s can be computed by subtracting the number of
0s from the total number of creases, we have

|Rn
p |1 = |Rn

p | − |Rn
p |0

= (pn − 1)− 1

2
(pn − np + n− 1)(2.17)

=
1

2
(pn + np− n− 1).

Thus we complete the proof.

3. Number of 0s and 1s in (RpRq)
n

In this section, we compute the number of 0s and 1s in (RpRq)
n.

First, we estimate the number of 0s and 1s in (RpRq)
n when p and q are

even.

Theorem 3.1. Let p and q be even numbers with p ≥ 2 and q ≥ 2.
For n ∈ N, we have

(3.1) |(RpRq)
n|0 =

1

2
((pq)n−p) and |(RpRq)

n|1 =
1

2
((pq)n +p−2).

Proof. Since p and q are even, Theorem 2.1 gives

(RpRq)
n

= Rp

(
Rq(RpRq)

n−1)(3.2)

=
((

Rq(RpRq)
n−1)c 1 Rq(RpRq)

n−1 1 · · · 1 Rq(RpRq)
n−1
)

and

Rq(RpRq)
n−1

= Rq

(
(RpRq)

n−1)(3.3)

=
((

(RpRq)
n−1)c 1 (RpRq)

n−1 1 · · · 1 (RpRq)
n−1
)
.(

Rq(RpRq)
n−1)c and Rq(RpRq)

n−1 appear p
2 times and p

2 times, respec-

tively, and 1 appears p − 1 times in (3.2). In addition,
(
(RpRq)

n−1)c
and (RpRq)

n−1 appear q
2 times and q

2 times, respectively, and 1 appears
q − 1 times in (3.3). By (3.2), (3.3) and Lemma 1.2, we have

|(RpRq)
n| =

p

2
|
(
Rq(RpRq)

n−1)c|+ p

2
|Rq(RpRq)

n−1|+ (p− 1)

=
p

2
|Rq(RpRq)

n−1|+ p

2
|Rq(RpRq)

n−1|+ (p− 1)(3.4)

= p|Rq(RpRq)
n−1|+ (p− 1)
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and

|Rq(RpRq)
n−1| =

q

2
|
(
(RpRq)

n−1)c|+ q

2
|(RpRq)

n−1|+ (q − 1)

=
q

2
|(RpRq)

n−1|+ q

2
|(RpRq)

n−1|+ (q − 1)(3.5)

= q|(RpRq)
n−1|+ (q − 1).

From (3.4) and (3.5), we get

|(RpRq)
n| = p|Rq(RpRq)

n−1|+ (p− 1)

= p
(
q|(RpRq)

n−1|+ (q − 1)
)

+ (p− 1)(3.6)

= pq|(RpRq)
n−1|+ pq − 1.

By adding 1 on both sides of (3.6), we have

|(RpRq)
n|+ 1 = pq|(RpRq)

n−1|+ pq

= pq
(
|(RpRq)

n−1|+ 1
)

= (pq)2
(
|(RpRq)

n−2|+ 1
)

= · · ·(3.7)

= (pq)n
(
|(RpRq)

0|+ 1
)

= (pq)n,

since |(RpRq)
0| = 0. Thus

(3.8) |(RpRq)
n| = (pq)n − 1

and

|Rq(RpRq)
n−1| = q|(RpRq)

n−1|+ (q − 1)

= q
(
(pq)n−1 − 1

)
+ (q − 1)(3.9)

= pn−1qn − 1.

Now, we compute the number of 0s and 1s in (RpRq)
n.

By (3.4), (3.9) and Lemma 1.2, we have

|(RpRq)
n|0 =

p

2
|
(
Rq(RpRq)

n−1)c|0 +
p

2
|Rq(RpRq)

n−1|0

=
p

2
|Rq(RpRq)

n−1|1 +
p

2
|Rq(RpRq)

n−1|0

=
p

2
|Rq(RpRq)

n−1|(3.10)

=
p

2
(pn−1qn − 1)

=
1

2

(
(pq)n − p

)
.
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By (3.8) and (3.10), we finally have

|(RpRq)
n|1 = |(RpRq)

n| − |(RpRq)
n|0

=
(
(pq)n − 1

)
− 1

2

(
(pq)n − p

)
(3.11)

=
1

2

(
(pq)n + p− 2

)
.

Therefore we prove (3.1).

Now, we estimate the number of 0s and 1s in (RpRq)
n when p is even

and q is odd.

Theorem 3.2. Let p be an even number with p ≥ 2 and let q be an
odd number with q ≥ 3. For n ∈ N, we have

(3.12) |(RpRq)
n|0 =

1

2
((pq)n−p) and |(RpRq)

n|1 =
1

2
((pq)n+p−2).

Proof. Since p is even and q is odd, Theorem 2.1 gives

(RpRq)
n

= Rp

(
Rq(RpRq)

n−1)(3.13)

=
((

Rq(RpRq)
n−1)c 1 Rq(RpRq)

n−1 1 · · · 1 Rq(RpRq)
n−1
)

and

Rq(RpRq)
n−1

= Rq

(
(RpRq)

n−1)(3.14)

=
(

(RpRq)
n−1 1

(
(RpRq)

n−1)c 1 · · · 1 (RpRq)
n−1
)
.(

Rq(RpRq)
n−1)c and Rq(RpRq)

n−1 appear p
2 times and p

2 times, respec-

tively, and 1 appears p − 1 times in (3.13). In addition,
(
(RpRq)

n−1)c
and (RpRq)

n−1 appear q−1
2 times and q+1

2 times, respectively, and 1
appears q−1 times in (3.14). By (3.13), (3.14) and Lemma 1.2, we have

|(RpRq)
n| =

p

2
|
(
Rq(RpRq)

n−1)c|+ p

2
|Rq(RpRq)

n−1|+ (p− 1)

=
p

2
|Rq(RpRq)

n−1|+ p

2
|Rq(RpRq)

n−1|+ (p− 1)(3.15)

= p|Rq(RpRq)
n−1|+ (p− 1)
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and

|Rq(RpRq)
n−1| =

q − 1

2
|
(
(RpRq)

n−1)c|+ q + 1

2
|(RpRq)

n−1|+ (q − 1)

=
q − 1

2
|(RpRq)

n−1|+ q + 1

2
|(RpRq)

n−1|+ (q − 1)(3.16)

= q|(RpRq)
n−1|+ (q − 1).

From (3.15) and (3.16), we get

|(RpRq)
n| = p|Rq(RpRq)

n−1|+ (p− 1)

= p
(
q|(RpRq)

n−1|+ (q − 1)
)

+ (p− 1)(3.17)

= pq|(RpRq)
n−1|+ pq − 1.

By adding 1 on both sides of (3.17), we have

|(RpRq)
n|+ 1 = pq|(RpRq)

n−1|+ pq

= pq
(
|(RpRq)

n−1|+ 1
)

= (pq)2
(
|(RpRq)

n−2|+ 1
)

= · · ·(3.18)

= (pq)n
(
|(RpRq)

0|+ 1
)

= (pq)n,

since |(RpRq)
0| = 0. Thus

(3.19) |(RpRq)
n| = (pq)n − 1

and

|Rq(RpRq)
n−1| = q|(RpRq)

n−1|+ (q − 1)

= q
(
(pq)n−1 − 1

)
+ (q − 1)(3.20)

= pn−1qn − 1.

Now, we compute the number of 0s and 1s in (RpRq)
n.

By (3.15), (3.20) and Lemma 1.2, we have

|(RpRq)
n|0 =

p

2
|
(
Rq(RpRq)

n−1)c|0 +
p

2
|Rq(RpRq)

n−1|0

=
p

2
|
(
Rq(RpRq)

n−1)|1 +
p

2
|Rq(RpRq)

n−1|0

=
p

2
|Rq(RpRq)

n−1|(3.21)

=
p

2
(pn−1qn − 1)

=
1

2

(
(pq)n − p

)
.
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By (3.19) and (3.21), we finally have

|(RpRq)
n|1 = |(RpRq)

n| − |(RpRq)
n|0

=
(
(pq)n − 1

)
− 1

2

(
(pq)n − p

)
(3.22)

=
1

2

(
(pq)n + p− 2

)
.

Therefore we prove (3.12).

Now, we estimate the number of 0s and 1s in (RpRq)
n when p is odd

and q is even.

Theorem 3.3. Let p be an odd number with p ≥ 3 and let q be an
even number with q ≥ 2. For n ∈ N, we have

(3.23) |(RpRq)
n|0 =

1

2
((pq)n − p− q + 1)

and

(3.24) |(RpRq)
n|1 =

1

2
((pq)n + p + q − 3).

Proof. Since p is odd and q is even, Theorem 2.1 gives

(RpRq)
n

= Rp

(
Rq(RpRq)

n−1)(3.25)

=
(
Rq(RpRq)

n−1 1
(
Rq(RpRq)

n−1)c 1 · · · 1 Rq(RpRq)
n−1
)

and

Rq(RpRq)
n−1

= Rq

(
(RpRq)

n−1)(3.26)

=
((

(RpRq)
n−1)c 1 (RpRq)

n−1 1 · · · 1 (RpRq)
n−1
)
.(

Rq(RpRq)
n−1)c and Rq(RpRq)

n−1 appear p−1
2 times and p+1

2 times, re-

spectively, and 1 appears p−1 times in (3.25). In addition,
(
(RpRq)

n−1)c
and (RpRq)

n−1 appear q
2 times and q

2 times, respectively, and 1 appears
q − 1 times in (3.26). By (3.25), (3.26) and Lemma 1.2, we have

|(RpRq)
n| =

p− 1

2
|
(
Rq(RpRq)

n−1)c|+ p + 1

2
|Rq(RpRq)

n−1|+ (p− 1)

=
p− 1

2
|Rq(RpRq)

n−1|+ p + 1

2
|Rq(RpRq)

n−1|+ (p− 1)(3.27)

= p|Rq(RpRq)
n−1|+ (p− 1)
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and

|Rq(RpRq)
n−1| =

q

2
|
(
(RpRq)

n−1)c|+ q

2
|(RpRq)

n−1|+ (q − 1)

=
q

2
|(RpRq)

n−1|+ q

2
|(RpRq)

n−1|+ (q − 1)(3.28)

= q|(RpRq)
n−1|+ (q − 1).

From (3.27) and (3.28), we get

|(RpRq)
n| = p|Rq(RpRq)

n−1|+ (p− 1)

= p
(
q|(RpRq)

n−1|+ (q − 1)
)

+ (p− 1)(3.29)

= pq|(RpRq)
n−1|+ pq − 1.

By adding 1 on both sides of (3.29), we have

|(RpRq)
n|+ 1 = pq|(RpRq)

n−1|+ pq

= pq
(
|(RpRq)

n−1|+ 1
)

= (pq)2
(
|(RpRq)

n−2|+ 1
)

= · · ·(3.30)

= (pq)n
(
|(RpRq)

0|+ 1
)

= (pq)n,

since |(RpRq)
0| = 0. Thus

(3.31) |(RpRq)
n| = (pq)n − 1

and

|Rq(RpRq)
n−1| = q|(RpRq)

n−1|+ (q − 1)

= q
(
(pq)n−1 − 1

)
+ (q − 1)(3.32)

= pn−1qn − 1.

Now, we compute the number of 0s and 1s in (RpRq)
n.
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By (3.27), (3.28), (3.31), (3.32) and Lemma 1.2, we have

|(RpRq)
n|0(3.33)

=
p− 1

2
|
(
Rq(RpRq)

n−1)c|0 +
p + 1

2
|Rq(RpRq)

n−1|0

=
p− 1

2
|Rq(RpRq)

n−1|1 +
p + 1

2
|Rq(RpRq)

n−1|0

= |Rq(RpRq)
n−1|0 +

p− 1

2

(
|Rq(RpRq)

n−1|1 + |Rq(RpRq)
n−1|0

)
= |Rq(RpRq)

n−1|0 +
p− 1

2
|Rq(RpRq)

n−1|

=
q

2

(
|
(
(RpRq)

n−1)c|0 + |(RpRq)
n−1|0

)
+

p− 1

2
|Rq(RpRq)

n−1|

=
q

2

(
|(RpRq)

n−1|1 + |(RpRq)
n−1|0

)
+

p− 1

2
|Rq(RpRq)

n−1|

=
q

2
|(RpRq)

n−1|+ p− 1

2
|Rq(RpRq)

n−1|

=
q

2
(pn−1qn−1 − 1) +

p− 1

2
(pn−1qn − 1)

=
1

2

(
(pq)n − p− q + 1

)
.

By (3.31) and (3.33), we finally have

|(RpRq)
n|1 = |(RpRq)

n| − |(RpRq)
n|0

=
(
(pq)n − 1

)
− 1

2

(
(pq)n − p− q + 1

)
(3.34)

=
1

2

(
(pq)n + p + q − 3

)
.

Therefore we prove (3.23) and (3.24).

Finally, we estimate the number of 0s and 1s in (RpRq)
n when p and q

are odd. In the proof, we use special properties of recursive sequences
that are not used in Theorem 3.1, Theorem 3.2 and Theorem 3.3.

Theorem 3.4. Let p and q be odd numbers with p ≥ 3 and q ≥ 3.
For n ∈ N, we have

(3.35) |(RpRq)
n|0 =

1

2

(
(pq)n − n(p + q − 2)− 1

)
and

(3.36) |(RpRq)
n|1 =

1

2

(
(pq)n + n(p + q − 2)− 1

)
.
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Proof. Since p and q are odd, Theorem 2.1 gives

(RpRq)
n

= Rp(Rq(RpRq)
n−1)(3.37)

=
(
Rq(RpRq)

n−1 1
(
Rq(RpRq)

n−1)c 1 · · · 1 Rq(RpRq)
n−1
)

and

Rq(RpRq)
n−1

= Rq((RpRq)
n−1)(3.38)

=
(

(RpRq)
n−1 1

(
(RpRq)

n−1)c 1 · · · 1 (RpRq)
n−1
)
.

(
Rq(RpRq)

n−1)c and Rq(RpRq)
n−1 appear p−1

2 times and p+1
2 times, re-

spectively, and 1 appears p−1 times in (3.37). In addition,
(
(RpRq)

n−1)c
and (RpRq)

n−1 appear q−1
2 times and q+1

2 times, respectively, and 1 ap-
pears q − 1 times in (3.38). By (3.37), (3.38) and Lemma 1.2, we have

|(RpRq)
n| =

p− 1

2
|
(
Rq(RpRq)

n−1)c|+ p + 1

2
|Rq(RpRq)

n−1|+ (p− 1)

=
p− 1

2
|Rq(RpRq)

n−1|+ p + 1

2
|Rq(RpRq)

n−1|+ (p− 1)(3.39)

= p|Rq(RpRq)
n−1|+ (p− 1)

and

|Rq(RpRq)
n−1| =

q − 1

2
|
(
(RpRq)

n−1)c|+ q + 1

2
|(RpRq)

n−1|+ (q − 1)

=
q − 1

2
|(RpRq)

n−1|+ q + 1

2
|(RpRq)

n−1|+ (q − 1)(3.40)

= q|(RpRq)
n−1|+ (q − 1).

From (3.39) and (3.40), we get

|(RpRq)
n| = p|Rq(RpRq)

n−1|+ (p− 1)

= p
(
q|(RpRq)

n−1|+ (q − 1)
)

+ (p− 1)(3.41)

= pq|(RpRq)
n−1|+ pq − 1.
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By adding 1 on both sides of (3.41), we have

|(RpRq)
n|+ 1 = pq|(RpRq)

n−1|+ pq

= pq
(
|(RpRq)

n−1|+ 1
)

= (pq)2
(
|(RpRq)

n−2|+ 1
)

= · · ·(3.42)

= (pq)n
(
|(RpRq)

0|+ 1
)

= (pq)n,

since |(RpRq)
0| = 0. Thus

(3.43) |(RpRq)
n| = (pq)n − 1

and

|Rq(RpRq)
n−1| = q|(RpRq)

n−1|+ (q − 1)

= q
(
(pq)n−1 − 1

)
+ (q − 1)(3.44)

= pn−1qn − 1.

Now, we compute the number of 0s and 1s in (RpRq)
n.

By (3.39) and Lemma 1.2, we have

|(RpRq)
n|0

=
p− 1

2
|
(
Rq(RpRq)

n−1)c|0 +
p + 1

2
|Rq(RpRq)

n−1|0(3.45)

=
p− 1

2
|Rq(RpRq)

n−1|1 +
p + 1

2
|Rq(RpRq)

n−1|0

and

|(RpRq)
n|1(3.46)

=
p− 1

2
|
(
Rq(RpRq)

n−1)c|1 +
p + 1

2
|Rq(RpRq)

n−1|1 + (p− 1)

=
p− 1

2
|Rq(RpRq)

n−1∣∣
0

+
p + 1

2
|Rq(RpRq)

n−1|1 + (p− 1).

From (3.45) and (3.46), we get

|(RpRq)
n|1 − |(RpRq)

n|0(3.47)

= |Rq(RpRq)
n−1|1 − |Rq(RpRq)

n−1|0 + (p− 1).
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By (3.40) and Lemma 1.2, we have

|Rq(RpRq)
n−1|0

=
q − 1

2
|
(
(RpRq)

n−1)c|0 +
q + 1

2
|(RpRq)

n−1|0(3.48)

=
q − 1

2
|(RpRq)

n−1|1 +
q + 1

2
|(RpRq)

n−1|0

and

|Rq(RpRq)
n−1|1

=
q − 1

2
|
(
(RpRq)

n−1)c|1 +
q + 1

2
|(RpRq)

n−1|1 + (q − 1)(3.49)

=
q − 1

2
|(RpRq)

n−1|0 +
q + 1

2
|(RpRq)

n−1|1 + (q − 1).

From (3.48) and (3.49), we get

|Rq(RpRq)
n−1|1 − |Rq(RpRq)

n−1|0(3.50)

= |(RpRq)
n−1|1 − |(RpRq)

n−1|0 + (q − 1).

By (3.47) and (3.50), we get

|(RpRq)
n|1 − |(RpRq)

n|0
= |(RpRq)

n−1|1 − |(RpRq)
n−1|0 + (p− 1) + (q − 1)

= |(RpRq)
n−2|1 − |(RpRq)

n−2|0 + 2(p− 1) + 2(q − 1)(3.51)

= · · ·
= |(RpRq)

0|1 − |(RpRq)
0|0 + n(p− 1) + n(q − 1).

Since |(RpRq)
0|1 = |(RpRq)

0|0 = 0, we get

|(RpRq)
n|1 − |(RpRq)

n|0 = n(p− 1) + n(q − 1)(3.52)

= n(p + q − 2).

From (3.43) and Lemma 1.2, we have

(3.53) |(RpRq)
n|1 + |(RpRq)

n|0 = |(RpRq)
n| = (pq)n − 1.

By combining (3.52) and (3.53), we have

(3.54) |(RpRq)
n|0 =

1

2

(
(pq)n − n(p + q − 2)− 1

)
and

|(RpRq)
n|1 =

1

2

(
(pq)n + n(p + q − 2)− 1

)
.(3.55)

Therefore we prove (3.35) and (3.36).
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From Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4, we
obtain the following.

Corollary 3.5. For any p, q ∈ N with p ≥ 2 and q ≥ 2, we have

(3.56) |(RpRq)
n| = (pq)n − 1.
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