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A NEW LOWER BOUND FOR THE VOLUME

PRODUCT OF A CONVEX BODY WITH CONSTANT

WIDTH AND POLAR DUAL OF ITS p-CENTROID

BODY

Y. D. Chai and Young Soo Lee

Abstract. In this paper, we prove that if K is a convex body
in En and Ei and Eo are inscribed ellipsoid and circumscribed

ellipsoid of K respectively with αEi = Eo, then
[
(α)

n
p
+1
]n
ω2
n ≥

V (K)V (Γ∗
pK) ≥

[(
1
α

)n
p
+1
]n
ω2
n. Lutwak and Zhang[6] proved that

if K is a convex body, ω2
n = V (K)V (ΓpK) if and only if K is an

ellipsoid. Our inequality provides very elementary proof for their
result and this in turn gives a lower bound of the volume product
for the sets of constant width.

1. Introduction

Let V denote the n-dimensional Lebesgue measure and ωn denote the
n-dimensional volume of closed unit ball in En. For a star body K in
En denote a polar body of K by K∗ and its p-centroid body by ΓpK
and call Γ∗pK, the polar body of ΓpK.

Lutwak and Zhang[6] determined upper bound of V (K)V (ΓpK) for
the convex body K and proved that

(1) ω2
n = V (K)V (ΓpK),

if and only if Kis an ellipsoid.
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In this paper, we develop bound for the volume product of a convex
set and polar body of its p-centroid body. And then we focus on convex
bodies of constant width. Convex bodies of constant width are studied
by many researchers on convex geometry[1, 2, 3, 4, 5, 8]. Convex body
of constant width is a convex body of same width in every direction.
Among others Reuleaux triangles and regular spheres are the typical
ones. However, regular sphere is the only one example of constant width
which is centrally symmetric convex body.

Our main theorems are the followings:

Theorem 1. IfK is a convex body in En and Ei and Eo are ellipsoids
such that Ei ⊂ K ⊂ Eo and αEi = Eo, then

(2)
[
(α)

n
p
+1
]n
ω2
n ≥ V (K)V (Γ∗pK) ≥

[(
1

α

)n
p
+1
]n
ω2
n.

Theorem 2. Let K be a convex body of constant width in En. Then
for each real p ≥ n,

V (K)V (Γ∗pK) ≥
(

(
√

2− 1)2
)n
ω2
n.

2. Preliminaries

For each direction u ∈ Sn−1, we define the support function
h(K,u) on Sn−1 of the convex body K by

h(K,u) = sup{u · x|x ∈ K}
and the radial function ρ(K,u) on Sn−1 of the convex body K by

ρ(K,u) = sup{λ > 0|λu ∈ K}.
Let Sn−1 denote the unit sphere centered at the origin in En, and

write On−1 for the (n− 1)-dimensional volume of Sn−1. For the closed
unit ball B in En, ωn is defined by

ωn = πn/2/Γ(1 +
n

2
), and On−1 = nωn.

where Γ denotes Gamma function.
The polar body of a convex body K, denoted by K∗, is a convex body

defined by

K∗ = {y|x · y ≤ 1 for all x ∈ K}.
It is easily verified that for convex bodies K1,K2 in En, K1 ⊂ K2

implies K∗2 ⊂ K∗1 .
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For a convex body K in En and real p ≥ 1, the p-centroid body, ΓpK,
of K is the convex body defined by the support function h(ΓpK,x):

h(ΓpK, x) =

(
ω2

nω2ωp−1

ωn+p

) 1
p
(

1

V (K)

) 1
p
(∫

Sn−1
|x · v|pρ(K, v)

n+p
dv

) 1
p

(3)

for all x ∈ En.
From the definition of the p-centroid body, it is easy to see that if E

is a centered ellipsoid, then

(4) ΓpE = E.

One can also easily check that for a convex body K in En and a positive
real number r

(5) Γp(rK) = rΓpK.

The width w(K,u) of a convex body K in a direction u ∈ Sn−1

is defined by w(K,u) = h(K,u) + h(K,−u), which is, of course, the
distance between the two supporting planes of K orthogonal to u. The
convex body K is said to be of constant width if w(K,u) is a constant
for all u ∈ Sn−1.

3. Main Results

Theorem 3. IfK is a convex body in En and Ei and Eo are ellipsoids
such that Ei ⊂ K ⊂ Eo and αEi = Eo, then

(6)
[
(α)

n
p
+1
]n
ω2
n ≥ V (K)V (Γ∗pK) ≥

[(
1

α

)n
p
+1
]n
ω2
n.

P roof :
For the left hand side inequality, let Ei and Eo be the ellipsoids such

that Ei ⊂ K ⊂ Eo and αEi = Eo. Then K ⊂ αEi.
Since

αnV (Ei) ≥ V (K),(7)

(
1

V (K)
)
1
n ≥ (

1

V (Ei)
)
1
nα
−n
p .(8)

But ρ(K) ≥ ρ(Ei). By the definition (3) of h(ΓpK,x)

h(ΓpK) ≥ α−
n
p h(Γp(Ei)).(9)
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So

Γ∗pK ⊂ α
n
p Γ∗pEi

or

V (Γ∗pK) ≤ α
n2

p V (Γ∗pEi).(10)

By (7) and( 10), we have[
(α)

n
p
+1
]n
ω2
n ≥ V (K)V (Γ∗pK)

which follows from V (Ei)V (Γ∗pEi) = ω2
n.

For the right hand side inequality, we have Eo ⊂ αK which implies
V (Eo) ≤ αnV (K). So

(
1

V (K)

) 1
p

≤ α
n
p

(
1

V (Eo)

) 1
p

.(11)

Using ρ(K,x) ≤ ρ(Eo, x) and (11), we have

h(ΓpK,x) ≤ α
n
p h(ΓpEo, x),

which implies (
1

α

)n
p

Γ∗pEo ⊂ Γ∗pK.

So we have

(12)

(
1

α

)n2

p

V (Γ∗pEo) ≤ V (Γ∗pK).

From (12) and the relation that V (Ei) ≤ V (K), we get

(13) V (K)V (Γ∗pK) ≥
(

1

α

)n2

p

V (Ei)V (Γ∗pEo).

Since Eo = αEi,
1

α
Γ∗pEi = Γ∗pEo.

Hence we have

(14) V (Γ∗pEo) =

(
1

α

)n

V (Γ∗pEi).

Substituting (14) for (13), we obtain

V (K)V (Γ∗pK) ≥ [(
1

α
)
n
p
+1

]nω2
n.
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which follows from V (Ei)V (Γ∗pEi) = ω2
n. �

The following corollary provides very elementary but short proof for
(1) compared with the proof by Lutwak and Zhang in [6].

Corollary 1. V (K)V (Γ∗pK) = ω2
n if and only if K is an ellipsoid.

Proof : Note that V (K)V (Γ∗pK) = ω2
n if and only if α=1 in (6) if

and only if K is an ellipsoid. �

Theorem 4. Let K be a convex body of constant width in En. Then
for each real p ≥ n,

V (K)V (Γ∗pK) ≥
(

(
√

2− 1)2
)n
ω2
n.

P roof : Melzak [7] proved that any set of width 1 has a unique
cocentric circumscribed ball Br0 of radius ro and inscribed ball Bri of

radius ri such that 1− [ n
2(n+1) ]

1
2 ≤ ri and [ n

2(n+1) ]
1
2 ≥ ro.

So it is easy to check that any convex body of constant width b in
En has the concentric inscribed ball Bi and circumscribed ball Bo with
their radii, ri and ro, respectively, satisfying Bi ⊂ K ⊂ Bo and

(15) ri + ro = b and b

(
1−

√
n

2n+ 2

)
≤ ri ≤ ro ≤ b

√
n

2n+ 2
.

Now let

λ =

√
n

2n+2

1−
√

n
2n+2

.

Then λBi = Bo. Let α =
√

n
2n+2 . Then, for n ≥ 2,

√
n

n+1 < 1, and so

0 < α < 1√
2
. Therefore λ <

√
2 + 1. This means that we may choose

balls Bi and Bo such that Bi ⊂ K ⊂ Bo and Bo = (
√

2 + 1)Bi. Now by
Theorem 3, we have

V (K)V (Γ∗pK) ≥
[(√

2− 1
)n
p
+1
]n
ω2
n.

So for p ≥ n

V (K)V (Γ∗pK) ≥
[(√

2− 1
)2]n

ω2
n.

�
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