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A CLASS OF INFINITE SERIES FROM GENERALIZED

EISENSTEIN SERIES

Sung-Geun Lim

Abstract. B. C. Berndt has found a transformation formula for a
large class of functions, which comes from a transformation formula
for a more general class of Eisenstein series. In this paper, using his
formula which is ‘twisted’ by change of variables, we find a class of
infinite series identities.

1. Introduction

B. C. Berndt [3] found a transformation formula(Theorem 1.1) for a
large class of functions which originally comes from generalized Eisen-
stein series. In this paper, using his fromula, we derive identities about
infinite series. Some of the results are found in the Notebooks of Ra-
manujan [7] or have been proved by Berndt([2, 3]). Specially, we obtain
elegant symmetric identities(Corollary 2.4–Corollary 2.6) and find re-
lations with sums of Bernoulli’s polynomials(Corollary 2.11, Corollary
2.12).

We shall use the following notation. Let r = (r1, r2) and h = (h1, h2)
denote real vectors. For a complex number w, the branch of the ar-
gument is given by −π ≤ arg w < π. Let e(w) = e2πiw and let
H = {τ ∈ C | Im(τ) > 0}, the upper half-plane. For τ ∈ H and an
arbitrary complex number s, define

AN (τ, s; r, h) :=
∑

Nm+r1>0

∑
n−h2>0

e (Nmh1 + ((Nm+ r1)τ + r2)(n− h2))
(n− h2)1−s

,

where N is a positive integer. Let

HN (τ, s; r, h) := AN (τ, s; r, h) + e
(s

2

)
AN (τ, s;−r,−h).
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The characteristic function of the integers modulo N is denoted by λN ,
i.e.,

λN (m) =

{
1, if m ≡ 0 (mod N),

0, otherwise.

For real x, y and Re s > 1, let

ψ(x, y, s) :=
∑

n+y>0

e(nx)

(n+ y)s
.

For a real number x, let {x} = x − [x], where [x] denotes the greatest
integer less than or equal to x. Let V τ = V (τ) = aτ+b

cτ+d denote a modular

transformation with c > 0 and c ≡ 0 (mod N) for every τ ∈ H. The
vectors R and H are defined by

R = (R1, R2) = (ar1 + cr2, br1 + dr2)

and
H = (H1, H2) = (dh1 − bh2,−ch1 + ah2).

We now state a twist version of which theorem in Berndt’s paper [3].

Theorem 1.1. ([3]). Let Q = {τ ∈ H | Re(τ) > −d/c}, %N =

c{R2} −Nd{R1/N} and c = c
′
N . Then for τ ∈ Q and all s,

(cτ + d)
−s
HN (V τ, s; r, h) = HN (τ, s;R,H)

−λN (r1)e(−r1h1)(cτ + d)
−s

Γ(s)(−2πi)
−s
(
ψ(h2, r2, s) + e

(
s

2

)
ψ(−h2,−r2, s)

)
+λN (R1)e(−R1H1)Γ(s)(−2πi)

−s
(
ψ(H2, R2, s) + e

(
−
s

2

)
ψ(−H2,−R2, s)

)
+(2πi)

−s
LN (τ, s;R,H),

where

LN (τ, s;R,H) :=

c′∑
j=1

e(−H1(Nj +N [R1/N ]− c)−H2([R2] + 1 + [(Njd+ %N )/c]− d))

·
∫
C

u
s−1 e

−(cτ+d)(Nj−N{R1/N})u/c

e−(cτ+d)u − e(cH1 + dH2)

e{(Njd+%N )/c}u

eu − e(−H2)
du,

where C is a loop beginning at +∞, proceeding in the upper half-plane,
encircling the origin in the positive direction so that u = 0 is the only
zero of

(e−(cτ+d)u − e(cH1 + dH2))(e
u − e(−H2))

lying “inside” the loop, and then returning to +∞ in the lower half
plane. Here, we choose the branch of us with 0 < arg u < 2π.

If s is an integer, then we can evaluate the integration in Theo-
rem 1.1 by using the residue theorem. Note that after evaluation of
LN (τ, s;R,H) for an integer s, the transformation formula in Theorem
1.1 will be valid for all τ ∈ H by analytic continuation.
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We shall use the generating function

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π)

for the Bernoulli polynomials Bn(x), n ≥ 0. The n-th Bernoulli number
Bn, n ≥ 0, is defined by Bn = Bn(0). Put B̄n(x) = Bn({x}), n ≥ 0.
Recall that B2n+1 = 0, n ≥ 1, and that B2n+1(1/2) = 0, n ≥ 0. The
following formulas are useful [1];

Bn(1− x) = (−1)nBn(x),

c−1∑
j=0

Bn

(
j

c
+ x

)
= c1−nBn(cx),

Bn

(
1

2

)
= −(1− 21−n)Bn, n ≥ 0.

2. A class of infinite series

In this section, we find a class of infinite series from Theorem 1.1
under a modular transformation. Let N be a positive integer, and let
r1 and r2 be arbitrary real numbers. Put

r =
(
r1,

r2
N

)
, h = (0, 0), τ =

N − 1

N
+

1

N
z, V τ =

1

N
− 1

N

1

z

for Re(z) ≥ 0. Here, V is a modular transformation corresponding to
the matrix (

1 −1
N −N + 1

)
.

Then we see that (R1, R2) = (r1 + r2,−r1 − r2 + r2/N). Employing
above r, h, τ , we obtain the following results. Let n be an arbitrary
integer. For N - r1,

(2.1) HN (V τ,−2n; r, 0) =

∞∑
k=1

cosh(πik(2(r1 + r2)/N + (1− 2{r1/N})/z))
k2n+1 sinh(πik/z)

,

and
(2.2)

HN (V τ,−2n− 1; r, 0) =

∞∑
k=1

sinh(πik(2(r1 + r2)/N + (1− 2{r1/N})/z))
k2n+2 sinh(πik/z)

.
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For N - R1 = r1 + r2,

(2.3) HN (τ,−2n;R, 0) =

∞∑
k=1

cosh(πik(−2r1/N + (2{(r1 + r2)/N} − 1)z))

k2n+1 sinh(−πikz)
,

and
(2.4)

HN (τ,−2n− 1;R, 0) =

∞∑
k=1

sinh(πik(−2r1/N + (2{(r1 + r2)/N} − 1)z))

k2n+2 sinh(−πikz)
.

Next, we have, by the residue theorem,

LN (τ,−n;R, 0) =

∫
C
u−n−1

e−z(1−{R1/N})u

e−zu − 1

e{%N/N}u

eu − 1
du

= −z−1
∫
C
u−n−3

∞∑
`=0

B`(1− {(r1 + r2)/N})
(−zu)`

`!

·
∞∑
m=0

Bm({1−N + %N/N})
um

m!
du

= −2πi

n+2∑
k=0

B̄k((r1 + r2)/N)B̄n+2−k(%N/N)

k!(n+ 2− k)!
zk−1.(2.5)

Now we let N - r1 and N - (r1 + r2). By Theorem 1.1, we see that

(2.6) znHN (V τ,−n; r, 0) = HN (τ,−n;R, 0) + (2πi)nLN (τ,−n;R, 0).

Putting (2.1), (2.2), (2.3), (2.4) and (2.5) into (2.6), we find that, for
any integer n,

z2n
∞∑
k=1

cosh(πik(2(r1 + r2)/N + (1− 2{r1/N})/z))
k2n+1 sinh(πik/z)

=
∞∑
k=1

cosh(πik(−2r1/N + (2{(r1 + r2)/N} − 1)z))

k2n+1 sinh(−πikz)

−(2πi)2n+1
2n+2∑
k=0

B̄k((r1 + r2)/N)B̄2n+2−k(%N/N)

k!(2n+ 2− k)!
zk−1,(2.7)

and

z2n+1
∞∑
k=1

sinh(πik(2(r1 + r2)/N + (1− 2{r1/N})/z))
k2n+2 sinh(πik/z)

=

∞∑
k=1

sinh(πik(−2r1/N + (2{(r1 + r2)/N} − 1)z))

k2n+2 sinh(−πikz)
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−(2πi)2n+2
2n+3∑
k=0

B̄k((r1 + r2)/N)B̄2n+3−k(%N/N)

k!(2n+ 3− k)!
zk−1.(2.8)

Theorem 2.1. Let α, β > 0 with αβ = π2. Suppose γ and γ′ are
real numbers such that γ and γ + γ′ are not integers. Then, for any
integer n,

α−n
∞∑
k=1

cosh(2(γ + γ′)πik + (1− 2{γ})αk)

k2n+1 sinh(αk)

= (−β)−n
∞∑
k=1

cosh(−2πiγk − (2{γ + γ′} − 1)βk)

k2n+1 sinh(βk)

−22n+1
2n+2∑
k=0

B̄k(γ + γ′)B̄2n+2−k(%N/N)

k!(2n+ 2− k)!
(πi)kαn−k+1,(2.9)

and

α−n−1/2
∞∑
k=1

sinh(2(γ + γ′)πik + (1− 2{γ})αk)

k2n+2 sinh(αk)

= (−β)−n−1/2
∞∑
k=1

sinh(−2πiγk − (2{γ + γ′} − 1)βk)

k2n+2 sinh(βk)

−22n+2
2n+3∑
k=0

B̄k(γ + γ′)B̄2n+3−k(%N/N)

k!(2n+ 3− k)!
(πi)kαn−k+3/2.(2.10)

Proof. Let z = πi/α in (2.7) and (2.8). Put r1/N = γ and r2/N =
γ′.

Now, we investigate a few special cases of Theorem 2.1. Let γ be a real
number with 0 < γ < 1 and γ′ = 0. We see that{%N

N

}
= {{−Nγ}+Nγ − γ} = 1− γ.(2.11)

Theorem 2.2. Let α, β > 0 with αβ = π2. Let γ be a real number
with 0 < γ < 1. Then, for any integer n,

α−n
∞∑
k=1

(−1)k+1 cosh((1− 2γ)αk) cos((1− 2γ)πk)

k2n+1 sinh(αk)

= (−β)−n
∞∑
k=1

(−1)k+1 cosh((1− 2γ)βk) cos((1− 2γ)πk)

k2n+1 sinh(βk)

+22n+1
n+1∑
k=0

B2k(γ)B2n+2−2k(γ)

(2k)!(2n+ 2− 2k)!
αn−k+1(−β)k,(2.12)
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and

α−n−1/2
∞∑
k=1

(−1)k sinh((1− 2γ)αk) cos((1− 2γ)πk)

k2n+2 sinh(αk)

= (−1)nβ−n−1/2
∞∑
k=1

(−1)k cosh((1− 2γ)βk) sin((1− 2γ)πk)

k2n+2 sinh(βk)

+22n+2
n+1∑
k=0

B2k(γ)B2n+3−2k(γ)

(2k)!(2n+ 3− 2k)!
αn−k+3/2(−β)k.(2.13)

Proof. Let 0 < γ < 1 and γ′ = 0 in Theorem 2.1 and equate the real
parts.

For γ = 1/2, (2.12) reduces to Theorem 3.1. in [3], p. 335.

Theorem 2.3. Let α, β > 0 with αβ = π2. Let γ be a real number
with 0 < γ < 1. Then, for any integer n,

α−n
∞∑
k=1

(−1)k sinh((1− 2γ)αk) sin((1− 2γ)πk)

k2n+1 sinh(αk)

= −(−β)−n
∞∑
k=1

(−1)k sinh((1− 2γ)βk) sin((1− 2γ)πk)

k2n+1 sinh(βk)

−22n+1π
n∑
k=0

B2k+1(γ)B2n+1−2k(γ)

(2k + 1)!(2n+ 1− 2k)!
αn−k(−β)k.(2.14)

Proof. Let 0 < γ < 1 and γ′ = 0 in Theorem 2.1 and equate the
imaginary parts.

We find the following symmetric identities with respect to α and β.

Corollary 2.4. Let α, β > 0 with αβ = π2. For any positive integer
M ,

α2M
∞∑
k=1

(−1)k cosh((1− 2γ)αk) cos((1− 2γ)πk)

k2n+1 sinh(αk)

= β2M
∞∑
k=1

(−1)k cosh((1− 2γ)βk) cos((1− 2γ)πk)

k2n+1 sinh(βk)

Proof. Put n = −2M in (2.12).
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Corollary 2.5. Let α, β > 0 with αβ = π2. For any positive integer
M ,

α2M−1
∞∑
k=1

(−1)k sinh((1− 2γ)αk) sin((1− 2γ)πk)

k−4M+3 sinh(αk)

= β2M−1
∞∑
k=1

(−1)k sinh((1− 2γ)βk) sin((1− 2γ)πk)

k−4M+3 sinh(βk)

Proof. Put n = −2M + 1 in (2.14).

Corollary 2.6. Let α, β > 0 with αβ = π2. Then
∞∑
k=1

(−1)k

k

cosh((1− 2γ)αk) cos((1− 2γ)πk)

sinh(αk)
+ α(γ2 − γ +

1

6
)

=
∞∑
k=1

(−1)k

k

cosh((1− 2γ)βk) cos((1− 2γ)πk)

sinh(βk)
+ β(γ2 − γ +

1

6
).

Proof. Let n = 0 in (2.12) and use B2(x) = x2 − x+ 1/6.

The following corollaries show exact values for some infinite series con-
taining hyperbolic functions.

Corollary 2.7. For any positive integer M ,
∞∑
k=1

(−1)kk4M+1 cosh((1− 2γ)πk) cos((1− 2γ)πk)

sinh(πk)
= 0.

Proof. Put α = β = π and n = −2M − 1 in (2.12)

Corollary 2.8. For any positive integer M ,
∞∑
k=1

(−1)kk4M−1 sinh((1− 2γ)πk) sin((1− 2γ)πk)

sinh(πk)
= 0.

Proof. Let α = β = π and put n = −2M in (2.14).

Corollary 2.9.
∞∑
k=1

(−1)k

k

(
sinh((1− 2γ)αk)

sinh(αk)
+

sinh((1− 2γ)βk)

sinh(βk)

)
sin((1− 2γ)πk)

= 2π

(
γ − 1

2

)2

.

Proof. Let n = 0 in (2.14).
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Corollary 2.10.
∞∑
k=1

(−1)k k cosh((1− 2γ)πk) cos((1− 2γ)πk)

sinh(πk)
= − 1

4π
.

Proof. Let α = β = π and n = −1 in (2.12).

We also see that sums of Bernoulli’s polynomials can be expressed by
infinite series.

Corollary 2.11. For any positive integer M ,
∞∑
k=1

(−1)k cosh((1− 2γ)πk) cos((1− 2γ)πk)

k4M−1 sinh(πk)

= −1

2
(2π)4M−1

2M∑
k=0

B2k(γ)B4M−2k(γ)

(2k)!(4M − 2k)!
(−1)k.

Proof. Let α = β = π and replace n with 2M − 1 in (2.12).

Corollary 2.12. For any positive integer M ,
∞∑
k=1

(−1)k sinh((1− 2γ)πk) sin((1− 2γ)πk)

k4M+1 sinh(πk)

= −1

2
(2π)4M+1

2M∑
k=0

B2k+1(γ)B4M+1−2k(γ)

(2k + 1)!(4M + 1− 2k)!
(−1)k.

Proof. Let α = β = π and replace n with 2M in (2.14).

For specific values of γ, we obtain many interesting infinite series with
hyperbolic functions. Some of them have already been studied by other
mathematicians, in special, Ramanujan. The case that γ = 1/4 in (2.12)
gives Theorem 3.1 in [3]. The identity (2.14) with γ = 1/4 is found in
Ramanujan’s Notebooks [7] and was also given by Malurkar [5], Nan-
jundiah [6] and Berndt [2]. Putting γ = 1/4 in (2.13), we obtain the
following proposition.

Proposition 2.13. Let α, β > 0 with αβ = π2. Then, for any
integer n,

α−n−1/2
∞∑

k=0

(−1)kcsch((2k + 1)α/2)

(2k + 1)2n+2
= (−4)−n−1β−n−1/2

∞∑
k=1

(−1)ksech(βk)

k2n+2

−22n+3π

n+1∑
k=0

B2k+1(1/4)B2n+2−2k(1/4)

(2k + 1)!(2n+ 2− 2k)!
αn−k+1/2(−β)k.
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Corollary 2.14.

∞∑
k=0

(−1)kcsch(π(2k + 1)/2) =
∞∑
k=1

(−1)ksech(πk) +
1

2
,

Proof. Let n = −1 and α = β = π in Proposition 2.13.

Corollary 2.15. For any integer M > 0,

∞∑
k=0

(−1)k(2k + 1)2Mcsch(π(2k + 1)/2) = (−4)M
∞∑
k=1

(−1)kk2M sech(πk).

Proof. Let n = −M − 1 and α = β = π in Proposition 2.13.

Let
( ·
3

)
be the Legendre symbol.

Proposition 2.16. Let α, β > 0 with αβ = π2. Then, for any
integer n,

α−n
∞∑
k=1

(
k

3

)
sinh(αk/3)

k2n+1 sinh(αk)
= −(−β)−n

∞∑
k=1

(
k

3

)
sinh(βk/3)

k2n+1 sinh(βk)

+
22n+2π√

3

n∑
k=0

B2k+1(1/3)B2n+1−2k(1/3)

(2k + 1)!(2n+ 1− 2k)!
αn−k(−β)k.

Proof. Let γ = 1/3 in (2.14).

Berndt [2] established Proposition 2.16 using the character analogue of
his transformation formula.

Proposition 2.17. Let α, β > 0 with αβ = π2. Then, for any
integer n,

α−n
∞∑

k=1

(
k

3

)
(−1)k sinh(2αk/3)

k2n+1 sinh(αk)
= −(−β)−n

∞∑
k=1

(
k

3

)
(−1)k sinh(2βk/3)

k2n+1 sinh(βk)

−22n+2π√
3

n∑
k=0

B2k+1(1/6)B2n+1−2k(1/6)

(2k + 1)!(2n+ 1− 2k)!
αn−k(−β)k.

Proof. Let γ = 1/6 in (2.14).

The following corollary is an immediate consequence of Proposition 2.16
and Proposition 2.17.

Corollary 2.18. Let M be any positive integer. Then∑
k≡1 (mod 3)

k4M−1 sinh(πk/3)

sinh(πk)
=

∑
k≡2 (mod 3)

k4M−1 sinh(πk/3)

sinh(πk)
,(2.15)
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∑
k≡1 (mod 3)

(−1)k k4M−1 sinh(2πk/3)

sinh(πk)
=

∑
k≡2 (mod 3)

(−1)k k4M−1 sinh(2πk/3)

sinh(πk)
,

∞∑
k=1

(
k

3

)
sinh(πk/3)

k sinh(πk)
=

π

18
√

3
,(2.16)

∞∑
k=1

(
k

3

)
(−1)k sinh(2πk/3)

k sinh(πk)
= − 2π

9
√

3
,

∞∑
k=1

(
k

3

)
sinh(πk/3)

k4M+1 sinh(πk)

=
(2π)4M+1π√

3

2M∑
k=0

B2k+1(1/3)B4M+1−2k(1/3)

(2k + 1)!(4M + 1− 2k)!
(−1)k,(2.17)

∞∑
k=1

(
k

3

)
(−1)k sinh(2πk/3)

k4M+1 sinh(πk)

= − (2π)4M+1π√
3

2M∑
k=0

B2k+1(1/6)B4M+1−2k(1/6)

(2k + 1)!(4M + 1− 2k)!
(−1)k.

Berndt [2] also has stated (2.15), (2.16), (2.17). We also have a
generalized form of the identity in Theorem 3.8. in [3], p. 338.

Theorem 2.19. Let θ = x+y
√
u, where x, y and u are integers such

that u > 1, u is square free, and x2 − uy2 = ε with ε ± 1. Let γ be a
real number with 0 < γ < 1. For any positive integer M ,

θ2Mε
∞∑
k=1

(−1)k

k2M+1
csc (πθk) cos

((
1

θ
− 1

)
(1− 2r)πk

)
=
∞∑
k=1

(−1)k

k2M+1
csc (πθk) cos ((θ − 1)(1− 2r)πk)

+(2π)2M+1
2M+2∑
k=0

Bk(γ)B2M+2−k(γ)

k!(2M + 2− k)!
(−1)M+k−1θk−1.

Proof. Put z = θ = x+ y
√
u in (2.6). Let r2 = 0 and 0 < r1 < N in

(2.6). Replace r1/N by γ.

Corollary 2.20. Let γ be a real number with 0 < γ < 1. Then

(3 + 2
√

2)

∞∑
k=1

1

k3
csc(
√

2πk) cos((2−
√

2)(1− 2γ)πk)

= −
∞∑

k=1

1

k3
csc(
√

2πk) cos(
√

2(1− 2γ)πk)
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−(2π)3
(

1−
√

2

8
γ4 − 1−

√
2

4
γ3 +

15 + 7
√

2

24
γ2 − 1

12
γ +

16− 15
√

2

360

)
.

Proof. Put θ = 1 +
√

2, ε = −1, r1/N = γ and M = 1 in Theorem
2.19.

If γ = 1/2, then Theorem 2.19 delivers Theorem 3.8 in [3]. Corollary
2.20 for γ = 1/2 had been posed as a problem, which has been solved
by Berndt [4].

Acknowledgement. The author thanks B. C. Berndt for his sugges-
tions and comments throughout this work.
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