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ON THE QUATERNIONIC GENERAL HELICES IN

EUCLIDEAN 4-SPACE

Dae Won Yoon

Abstract. In this paper, we give some characterizations for a quater-

nionic general helix by means of curvatures of a curve in a 4-

dimensional Euclidean space.

1. Introduction

The quaternion number system was discovered by Hamilton in 1843.

Quaternions form an extension of the field of complex numbers having

the property that the commutative law fails for multiplication, despite

the fact that every non-zero element has a multiplicative inverse. As

a set, the quaternions Q are equal to a 4-dimensional vector space R4

over real numbers. Every element in Q has an expression of the form

ae1 + be2 + ce3 + de4, where a, b, c, d are real numbers and e1, e2, e3, e4

are basis on R4. The basis element e4 = 1 will be the identity element

of Q, meaning that multiplication by e4 = 1 does nothing, and for this

reason, elements of Q are usually written ae1 + be2 + ce3 +de4 (e4 = 1),

supposing the basis element e4 = 1.

In [2] K. Baharathi and M. Nagaraj studied a quaternionic curve in

R3 and R4 and gave the Frenet formula for it. Also, A. C. Coken and A.
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Tuna([5]) studied the differential geometry of a quaternionic curve in a

4-dimensional semi-Euclidean space R4
2 with index 2.

A curve of constant slope or general helix in a 3-dimensional Eu-

clidean space R3 is defined by the property that the tangent makes a

constant angle with a fixed direction. A general helix is characterized

by the fact that the ratio τ/κ is constant along the curve, where κ and

τ denote the curvature and the torsion, respectively. Similar character-

ization of a helix in a 4-dimensional Euclidean space R4 was given by

Magden([8]). He characterizes a helix if and only if the function

k21
k22

+

(
1

k3

d

ds

(
k1
k2

))2

is a constant, where k1, k2 and k3 are the first, second and third curva-

tures of a curve in R4, respectively, and they are nowhere zero. On the

other hand, corresponding characterizations of time-like general helix in

a 4-dimensional Minkowski space R4
1 were given in [9]. Also, C. Camci

and et al.([3]) have given some characterizations of general helix by using

harmonic curvatures of a curve in Rn. For the study of a quaternionic

curve, M. A. Gungor and M. Tosun([7]) investigated quaternionic rec-

tifying curves in R3 and R4 and A. C. Coken and A. Tuna([5]) studies

quaternionic inclined curves in R4
2.

Our main aim in the present work is to study the quaternionic general

helix in R4.

2. Preliminaries

A real quaternionic is defined with q = ae1 + be2 + ce3 + de4 such

that

(i) ei × ei = −e4, (1 ≤ i ≤ 3)

(ii) ei × ej = −ej × ei = ek (1 ≤ i, j ≤ 3),

where (ijk) is even permutation of (123).
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Let p and q be any two elements of Q. Then the product of p and q

is defined by

p× q = SpSq − 〈Vp,Vq〉+ SpVq + SqVp + Vp ∧Vq,

where Sr and Vr denote scalar and vector part of r ∈ Q and we have

used the inner product and the cross product in Euclidean space.

On the other hand, the conjugate of q = ae1 + be2 + ce3 + de4 ∈ Q is

denoted by αq and given by

αq = Sq −Vq = de4 − ae1 − be2 − ce3.

From this, we define the symmetric non-degenerate real-valued bilinear

form h as follows:

h : Q×Q→ R

(p, q)→ h(p, q) =
1

2
(p× αq + q × αp).

It is called the quaternionic inner product. The norm of q is

||q||2 = q × αq = αq × q = a2 + b2 + c2 + d2.

The concept of a spatial quaternion will be made use throughout our

work. A number q is said to be a spatial quaternion if q + αq = 0. It is

a temporal quaternion if q − αq = 0. Therefore, any quaternion q can

be written as the form q = 1
2(q + αq) + 1

2(q − αq). The spatial part of q

is 1
2(q − αq) and is a spatial quaternion, while 1

2(q + αq) the temporal

part of q and is temporal quaternion ([2]).

Now, we consider a quaternionic curve in R3. A 3-dimensional Eu-

clidean space R3 is identified with the space of spatial quaternion {β ∈
Q | β + αβ = 0} in an obvious manner. Let I = [0, 1] be an interval in

the real line R and s ∈ I be the arc-length parameter along the smooth

curve
β : I ∈ R→ Q

s→ β(s) =

3∑
i=1

βi(s)ei, (1 ≤ i ≤ 3).
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The tangent vector β′(s) = t(s) has unit length ||t(s)|| = 1 for all s. It

follows

t′ × αt + t× αt′ = 0,

which implies t′ is orthogonal to t and t′ × αt is a spatial quaternion.

Let {t,n1,n2} be the Frenet frame of β(s). Then Frenet formula is

given by

t′ = kn1

n′1 = −kt + rn2

n′2 = −rn1

where t, n1, n2 are the unit tangent, the unit principal normal and

the unit binormal vector of a quaternionic curve β, respectively. The

functions k, r are called the principal curvature and the torsion of β,

respectively([2]).

3. Characterization of quaternionic general helices in Q

In this section, we give the necessary and sufficient condition for

quaternionic general helices.

Let

γ : I ⊂ R→ Q

s→ γ(s) =

4∑
i=1

γi(s)ei, e4 = 1

be a smooth curve in R4 defined by over an interval I with the arc-length

parameter s. The tangent T(s) = γ′(s) =
∑4

i=1 γ
′
i(s)ei has unit length.

Let {T,N1,N2,N3} be the Frenet apparatus of the space curve in R4.
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Then the Frenet formula are ([2])

(3.1)

T′(s) = KN1(s)

N′1(s) = −KT(s) + kN2(s)

N′2(s) = −kN1(s) + (r −K)N3(s)

N′3(s) = −(r −K)N2(s),

where N1 = t×T, N2 = n1 ×T, N3 = n2 ×T and K = ||T′(s)||.

This Frenet formula of the curve γ is obtained by making use the

Frenet formula for a curve β in R3. Moreover, there are relationships

between curvatures of the curve γ and β, These relations can be ex-

plained that the torsion k of γ is the principal curvature of the curve

β and the bitorsion of γ is (r −K), where r is the torsion of β and K

is the principal curvature of β. These relationships are only determined

for quaternions.

Theorem 3.1. Let γ = γ(s) be a unit speed quaternionic curve in

Q with non-zero curvatures K(s), k(s) and r(s) − K(s). Then γ is a

general helix in Q if and only if the function

(3.2)

(
K

k

)2

+
1

(r −K)2

((
K

k

)′)2

is a constant.

Proof. Let γ(s) be a general helix in Q and the axis of the curve γ(s)

be the unit vector U. Then, we have

h(T,U) = constant
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along the curve. By differentiating this equation with respect to s and

using the Frenet formula (3.1) we have

0 =
d

ds
h(T,U) =

1

2

d

ds
(T× αU + U× αT)

=
1

2
(T′ × αU + U× αT′)

= h(T′,U)

= Kh(N1,U).

Therefore, the unit vector U can be written as follows

(3.3) U = a1(s)T(s) + a2(s)N2(s) + a3(s)N3(s),

where

a1(s) = h(T,U) = constant, a2(s) = h(N2,U), a3(s) = h(N3,U),

a21 + a22 + a23 = 1.

The differentiation of (3.3) gives

(a1K − a2k)N1 + (a′2 − a3(r −K))N2 + (a′3 + a2(r −K))N3 = 0,

which implies

a1K − a2k = 0, a′2 − a3(r −K) = 0, a′3 + a2(r −K) = 0,

that is,

(3.4)
a2 =

K

k
a1 = − 1

r −K
a′3,

a′2 = a3(r −K).

By differentiating the first equation of (3.4) and using the second equa-

tion of (3.4), we obtain the ODE for a3 as follows

(3.5) a′′3 −
(r −K)′

r −K
a′3 + (r −K)2a3 = 0.

If we change variables in (3.5) as t =
∫ s
0 (r − K)ds, then the equation

(3.5) becomes

(3.6)
d2a3
dt2

+ a3 = 0.
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Thus, the solution of the differential equation (3.6) is given by

(3.7) a3 = A cos t(s) +B sin t(s),

for some constants A and B. From the first equation of (3.4) and (3.7)

we find

a2 =
K

k
a1 = A sin t(s)−B cos t(s),

a3 =
1

r −K

(
K

k

)′
a1 = A cos t(s) +B sin t(s).

From the above equations we obtain

A = a1

(
K

k
sin t(s) +

1

r −K

(
K

k

)′
cos t(s)

)
,

B = a1

(
1

r −K

(
K

k

)′
sin t(s)− K

k
cos t(s)

)
,

which imply

A2 +B2 = a21

((
K

k

)2

+
1

(r −K)2

((
K

k

)′)2
)
.

Thus, we have

(3.8)

(
K

k

)2

+
1

(r −K)2

((
K

k

)′)2

= constant.

Conversely, if the condition (3.2) holds, then we can always find a

constant unit vector U satisfying h(T,U) = constant. We consider the

unit vector defined by

U = T +
K

k
N2 +

1

r −K

(
K

k

)′
N3.

Differentiation of U with the help of (3.8) gives U′ = 0, this mean that

U is a constant vector. Consequently, the curve γ(s) is a general helix

in Q. �
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Theorem 3.2. A unit speed quaternionic curve γ(s) in Q is a general

helix if and only if there exists a C2-function f such that

(3.9) (r −K)f(s) =
d

ds

(
K

k

)
,

d

ds
f(s) = −(r −K)

(
K

k

)
.

Proof. We assume that γ is a general helix. Differentiation of (3.8)

gives(
K

k

)(
K

k

)′
+

1

r −K

(
K

k

)′(
− (r −K)′

(r −K)2
+

1

r −K

(
K

k

)′′)
= 0,

or equivalently,

(3.10)

(
K

k

)
d

ds

(
K

k

)
+

1

r −K
d

ds

(
K

k

)
d

ds

(
1

r −K
d

ds

(
K

k

))
= 0.

Therefore, we have

(3.11)
1

r −K
d

ds

(
K

k

)
= −

(
K
k

)
d
ds

(
K
k

)
d
ds

(
1

r−K
d
ds

(
K
k

)) .
If we define f = f(s) by

f(s) = −
(
K
k

)
d
ds

(
K
k

)
d
ds

(
1

r−K
d
ds

(
K
k

)) ,
then the equation (3.11) becomes

(3.12) (r −K)f(s) =
d

ds

(
K

k

)
.

From (3.11) it can be written

(3.13)
d

ds

(
1

r −K
d

ds

(
K

k

))
= −(r −K)

(
K

k

)
.

By combining (3.12) and (3.13), we find

(3.14)
d

ds
f(s) = −(r −K)

(
K

k

)
.

Conversely, if the equation (3.9) holds, we define a unit constant

vector U by

U = T +
K

k
N2 + f(s)N3.
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It follows h(T,U) = 1. Thus, γ is a general helix. �

Theorem 3.3. Let γ be a unit speed quaternionic curve γ(s) in Q.

Then γ is a general helix if and only if the following condition holds;

(3.15)
K

k
= C1 cos t+ C2 sin t,

where C1, C2 are constants and t(s) =
∫ s
0 (r −K)ds.

Proof. Suppose that γ is a general helix. By using Theorem 3.1, let

define the C2-function t(s) and the C1-functions m(s) and n(s) by

(3.16) t(s) =

∫ s

0
(r −K)ds,

(3.17)
m(s) =

K

k
cos t− f(s) sin t,

n(s) =
K

k
sin t+ f(s) cos t.

If we differentiate equation (3.17) with respect to s and take account of

(3.16), (3.12) and (3.14), we have m′ = 0 and n′ = 0. Therefore, m = C1

and n = C2 are constants. Thus, from (3.17) we obtain

K

k
= C1 cos t+ C2 sin t.

Conversely, suppose that equation (3.15) holds. Then from (3.17) we

have

f = −C1 cos t+ C2 sin t,

which satisfies the condition of Theorem 3.2. Thus, γ is a general helix

in Q. �
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