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THE LATTICE OF INTERVAL-VALUED FUZZY IDEALS

OF A RING

Keon Chang Lee, Kul Hur and Pyung Ki Lim∗

Abstract. We investigate the lattice structure of various sublat-
tices of the lattice of interval-valued fuzzy subrings of a given ring.
We prove that a special class of interval-valued fuzzy ideals of a ring.
Finally, we show that the lattice of interval-valued fuzzy ideals of
R is not complemented[resp. has no atoms(dual atoms)].

1. Introduction and Preliminaries

The concept of a fuzzy set was introduced by Zadeh[7], and then he
introduced the notion of interval-valued fuzzy sets as a generalization
of fuzzy sets in 1975[8]. After that time, Biswas[2] applied it to group
theory, and Montal and Samanta[6] to topology. Recently, Cheong and
Hur[3] investigated interval-valued ideals and bi-ideals of a subgroup,
Kang and Hur[5] applied the concept of interval-valued fuzzy sets to
algebra. Moreover, Choi et.al[4] introduced the notion of interval-valued
smooth topological spaces and studied some of it’s properties.

In this paper, we investigate the lattice of various sublattices of the
lattice of interval-valued fuzzy subgroups of a given ring. We prove that a
special class of interval-valued fuzzy ideals forms a modular sublattice of
the lattice of interval-valued fuzzy ideals of a ring. Finally, we show that
the lattice of interval-valued fuzzy ideals of R is not complemented[resp.
has no atoms(dual atoms)].

Now, we will list some basic concepts and two results which are needed
in the later sections.
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Let D(I) be the set of all closed subintervals of the unit interval
I = [0, 1]. The elements of D(I) are generally denoted by capital letters
M,N, · · ·, and note that M = [ML,MU ], where ML and MU are the
lower and the upper end points respectively. Especially, we denoted , 0
= [0, 0], 1 = [1, 1], and a=[a, a] for every a ∈ (0, 1). We also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ML = NL,MU = NU ),
(ii) (∀M,N ∈ D(I)) (M ≤ N ⇔ML ≤ NL,MU ≤ NU ).

For every M ∈ D(I), the complement of M , denoted by M c, is defined
by M c = 1−M = [1−MU , 1−ML](See [6]).

Definition 1.1 [6, 8]. A mapping A : X → D(I) is called an interval -
valued fuzzy set (in short, IVS ) in X and is denoted by A = [AL, AU ].

Thus for each x ∈ X, A(x) = [AL(x), AU (x)], where AL(x)[resp.
AU (x)] is called the lower [resp. upper ] end point of x to A. For any
[a, b] ∈ D(I), the interval-valued fuzzy set A in X defined by A(x) =

[a, b] for each x ∈ X is denoted by ˜[a, b] and if a = b, then the IVS˜[a, b] is denoted by simply ã. In particular, 0̃ and 1̃ denote the interval -
valued fuzzy empty set and the interval -valued fuzzy whole set in X, re-
spectively.

We will denote the set of all IVSs in X as D(I)X . It is clear that
[A,A] ∈ D(I)X for each A ∈ IX .

Definition 1.2 [6]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂ D(I)X .
Then

(a) A ⊂ B iff AL ≤ BL and AU ≤ BU .
(b) A = B iff A ⊂ B and B ⊂ A.
(c) Ac = [1−AU , 1−AL].
(d) A ∪B = [AL ∨BL, AU ∨BU ].

(d)′
⋃
α∈Γ

Aα = [
∨
α∈Γ

ALα,
∨
α∈Γ

AUα ].

(e) A ∩B = [AL ∧BL, AU ∧BU ].

(e)′
⋂
α∈Γ

Aα = [
∧
α∈Γ

ALα,
∧
α∈Γ

AUα ].

Result 1.A [6, Theorem 1]. Let A,B,C ∈ D(I)X and let {Aα}α∈Γ ⊂
D(I)X . Then

(a) 0̃ ⊂ A ⊂ 1̃.
(b) A ∪B = B ∪A , A ∩B = B ∩A.
(c) A ∪ (B ∪ C) = (A ∪B) ∪ C , A ∩ (B ∩ C) = (A ∩B) ∩ C.
(d) A,B ⊂ A ∪B , A ∩B ⊂ A,B.
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(e) A ∩ (
⋃
α∈Γ

Aα) =
⋃
α∈Γ

(A ∩Aα).

(f) A ∪ (
⋂
α∈Γ

Aα) =
⋂
α∈Γ

(A ∪Aα).

(g) (0̃)c = 1̃ , (1̃)c = 0̃.
(h) (Ac)c = A.

(i) (
⋃
α∈Γ

Aα)c =
⋂
α∈Γ

Acα , (
⋂
α∈Γ

Aα)c =
⋃
α∈Γ

Acα.

It is obvious that (D(I)X ,∪,∩) is complete lattice satisfying the De-
Morgan’s Laws.

Definition 1.3 [2]. Let A be an IVS in a group G. Then A is called
an interval-valued fuzzy subgroup (in short, IVG) in G if it satisfies
the conditions : For any x, y ∈ G,

(a) AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y).
(b) AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x).
We will denote the set of all IVGs of G as IVG(G).

Result 1.B [2, Proposition 3.1]. Let A be an IVG in a group G.
(a) A(x−1) = A(x),∀x ∈ G.
(b) AL(e) ≥ AL(x) and AU (e) ≥ AU (x),∀x ∈ G, where e is the iden-

tity of G.

Throughout this paper, L = (L,+, ·) denotes a lattice, where “+”
and “·” denote the sup and inf, respectively. For a general background
of lattice theory, we refer to [1]. Moreover, we will denote by R a ring
having the zero “0”, with respect to binary operations “+” and“·”.

2. Lattice of interval-valued fuzzy subrings

Definition 2.1 [5]. Let R be a ring and let A ∈ D(I)R. Then A is
called an interval-valued fuzzy subring(in short, IVR) of R if it satisfies
the following conditions: For any x, y ∈ R,

(i) AL(x+ y) ≥ AL(x) ∧AL(y) and AU (x+ y) ≥ AU (x) ∧AU (y).
(ii) AL(−x) ≥ AL(x) and AU (−x) ≥ AU (x).
(iii) AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y).

We will denote the set of all IVRs of R as IVR(R).
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From Result 1.B, it can be easily verified that if A ∈ IVR(R), AL(x) ≤
AL(0), AU (x) ≤ AU (0) and A(x) = A(−x) for each x ∈ R. We shall call
A(0) as the tip of the interval-valued fuzzy subring A.

Result 2.A [5, Proposition 6.2]. Let A ∈ D(I)R. Then A ∈ IVR(R)
if and only if for any x, y ∈ R,

(a) AL(x− y) ≥ AL(x) ∧AL(y) and AU (x− y) ≥ AU (x) ∧AU (y).

(b) AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y).

Proposition 2.2. let {Aα}α∈Γ ⊂ IVR(R). Then ∩α∈ΓAα ∈ IVR(R).

Proof. let A = ∩α∈ΓAα and let x, y ∈ R. Then

AL(x− y) =
∧
α∈Γ

ALα(x− y) ≥
∧
α∈Γ

(ALα(x) ∧ALα(y)) (Since Aα ∈ IVR(R))

= (
∧
α∈Γ

ALα(x)) ∧ (
∧
α∈Γ

ALα(y)) = (
⋂
α∈Γ

Aα)L(x) ∧ (
⋂
α∈Γ

Aα)L(y)

= AL(x) ∧AL(y).

By the similar arguments, we have that AU (x− y) ≥ AU (x)∧AU (y).
Similarly, we have AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥ AU (x) ∧
AU (y). Hence, by Result 2.A, A =

⋂
α∈Γ

Aα ∈ IVR(R).

Definition 2.3. Let A ∈ IVR(R). Then an interval-valued fuzzy subring
generated by A is the least interval-valued fuzzy subring of R containing
A and denoted by (A).

Here, we construct the lattice of interval-valued fuzzy subrings such
as interval-valued fuzzy (left, right) ideals. The common feature of all
these constructions is that the intersection of an arbitrary family of
interval-valued fuzzy subrings is always an interval-valued fuzzy sub-
ring(See proposition 2.2). Therefore, we consider the inf of a family of
interval-valued fuzzy subrings to be their intersection, whereas the union
of two interval-valued fuzzy subrings may not be an interval-valued fuzzy
subring. Hence, we shall always be talking the sup of a family of interval-
valued fuzzy subrings to be the interval-valued fuzzy subring generated
by the union of that family. The outcome of the above discussion can
be described can be described by the following propositions.
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Proposition 2.4. IVR(R) forms a complete lattice under the ordering
of interval-valued fuzzy set inclusion ⊂.

Definition 2.5 [5]. Let A ∈ IVR(R). Then A is called an:
(1) interval-valued fuzzy left ideal (in short, IVLI) in R if AL(xy) ≥

AL(y) and AU (xy) ≥ AU (y) for any x, y ∈ R.
(2) interval-valued fuzzy right ideal (in short, IVRI) in X if AL(xy) ≥

AL(x) and AU (xy) ≥ AU (x) for any x, y ∈ R.
(3) interval-valued fuzzy ideal (in short, IVI) in X if it both an IVLI

and an IVRI in R.
We will denote the set of all IVIs [resp. IVLIs and IVRIs] of R as

IVI(R) [resp. IVLI(R) and IVRI(R)]. In particular, IVI[λ0,µ0](R) de-
notes the set of all IVIs with the same tip ”[λ0, µ0]”. It is clear that
IVI(R)=IVLI(R) ∩ IVRI(R).

Result 2.B [5, Proposition 6.5]. Let A ∈ D(I)R. Then A ∈
IVI(R)[resp. IVLI(R) and IVRI(R)] if and only if for any x, y ∈ R,

(a) AL(x− y) ≥ AL(x) ∧AL(y) and AU (x− y) ≥ AU (x) ∧AU (y).
(b) AL(xy) ≥ AL(x) ∨ AL(y) and AU (xy) ≥ AU (x) ∨ AU (y) [resp.

AL(xy) ≥ AL(y), AU (xy) ≥ AU (y) and AL(xy) ≥ AL(x), AU (xy) ≥
AU (x)].

The proof of the following result is similar to Proposition 2.2.

Proposition 2.6. Let {Aα}α∈Γ ⊂ IVI(R) [resp. IVLI(R) and IVRI(R)].
Then

⋂
α∈ΓAα ∈ IVI(R) [resp. IVLI(R) and IVRI(R)].

Definition 2.7. Let A ∈ D(I)R. Then the IVI[resp. IVLI and IVRI]
generated by A is the least IVI[resp. IVLI and IVRI] of R containing A
and denoted by (A).

The following is easily verified.

Proposition 2.8. (a) IVI(R)[resp. IVLI(R) and IVRI(R)] is a meet
complete sublattice of IVR(R).

(b) IVI[λ,µ](R) is a complete sublattice of IVR(R).

Definition 2.9[2,5]. Let X be a set and let A ∈ D(I)X . Then A is
said to have the sup-property if for each Y ∈ P (X), there exists y0 ∈ Y
such that A(y0) = [

∨
x∈Y A

L(x),
∨
x∈Y A

U (x)], where P (X) denotes the
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power set of X.

Definition 2.10. Let A,B ∈ D(I)R. Then the sum A + B and the
product A ◦B of A and B are defined as follows, respectively: For each
z ∈ R,

(i) (A+B)(z) = [
∨

z=x+y

(AL(x) ∧BL(y)),
∨

z=x+y

(AL(x) ∧BU (y))],

(ii)

(A◦B)(z) =

 [
∨
z=xy

(AL(x) ∧BL(y)),
∨
z=xy

(AU (x) ∧BU (y))], if z = xy;

[0, 0], otherwise.

Definition 2.11. Let X be a set, let A ∈ D(I)X and let [λ, µ] ∈ D(I).

(i) [5] The set A[λ,µ] = {x ∈ X : AL(x) ≥ λ and AU (x) ≥ µ} is called
a [λ, µ]-level-subset of A.

(ii) The set A∗[λ,µ] = {x ∈ X : AL(x) > λ and AU (x) > µ} is called a

strong [λ, µ]-level-subset of A.

The following is the immediate result of Propositions 4.16 and 4.17
in [5].

Theorem 2.12. Let A ∈ D(I)R. Then A ∈ IVI(R) if and only if A[λ,µ]

is an ideal for each [λ, µ] ∈ D(I) with λ ≤ AL(0) and µ ≤ AU (0).

Lemma 2.13. Let A,B ∈ IVI(R). If A and B have the sup-property,
then (A+B)[λ,µ] = A[λ,µ] +B[λ,µ] for each [λ, µ] ∈ D(I).

Proof. Let z ∈ (A+B)[λ,µ]. Then

(A+B)L(z) =
∨

z=x+y

(AL(x) ∧BL(y))

and (2.1)

(A+B)U (z) =
∨

z=x+y

(AU (x) ∧BU (y)).

For each decomposition z = x + y, we have either AL(x) ≤ BL(y)
and AU (x) ≤ BU (y) or AL(x) ≥ BL(y) and AU (x) ≥ BU (y). This
contradiction leads as to define the following subsets of R:
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X(z) = {x ∈ R : z = x+ y for some y ∈ R such that AL(x) ≤ BL(y)
and AU (x) ≤ BU (y)},
Y (z) = {x ∈ R : z = x+ y for some y ∈ R such that AL(x) ≥ BL(y)

and AU (x) ≥ BU (y)},
X∗(z) = {x ∈ R : z = x+y for some y ∈ R such that AL(x) ≥ BL(y)

and AU (x) ≥ BU (y)}.
Then clearly R = X(z) ∪X∗(z). Since A and B have the sup-property,
there exist x0 ∈ X(z) and y0 ∈ Y (z) such that

AL(x0) =
∨

x∈X(z)

AL(x), AU (x0) =
∨

x∈X(z)

AU (x)

and (2.2)

BL(y0) =
∨

y∈Y (z)

BL(y), BU (y0) =
∨

y∈Y (z)

BU (y).

Since x0 ∈ X(z), there exists y′0 ∈ R with z = x0+y′0 such that AL(x0) ≤
BL(y′0) and AU (x0) ≤ BU (y′0).

Since y0 ∈ Y (z), there exists x′0 ∈ R with z = x′0+y0 such that AL(x′0) ≥
BL(y0) and AU (x′0) ≥ BU (y0).

But for A(x0) and B(y0), we have either AL(x0) ≥ BL(y0) and AU (x0) ≥
BU (y0) or AL(x0) ≤ BL(y0) and AU (x0) ≤ BU (y0).

Case (i): Suppose AL(x0) ≥ BL(y0) and AU (x0) ≥ BU (y0). Then∨
z=x+y

(AL(x) ∧BL(y)) =
∨
x∈R

(AL(x) ∧BL(z − x)) (Since y = z − x)

= (
∨

x∈X(z)

(AL(x) ∧BL(z − x))) ∨ (
∨

x∈X∗(z)

(AL(x)

∧BL(z − x))) (Since R = X(z) ∪X∗(z))

= (
∨

x∈X(z)

(AL(x) ∧BL(y))) ∨ (
∨

x∈Y (z)

(AL(x) ∧BL(z − x)))

= (
∨

x∈X(z)

AL(x) ∨ (
∨

x∈Y (z)

BL(y)))

= AL(x0) ∧BL(y0) (By (2.2)

= AL(x0). (By the hypothesis)

Similarly, we have that
∨
z=x+y(A

U (x) ∧ BU (y)) = AU (x0). Thus, by

(2.1), AL(x0) = (A + B)L(z) ≥ λ and AU (x0) = (A + B)U (z) ≥ µ. So
x0 ∈ A[λ,µ]. Since BL(y′0) ≥ AL(x0) and BU (y′0) ≥ AU (x0), BL(y′0 ≥ λ

and BU (y′0 ≥ µ. Then y′0 ∈ B[λ,µ]. Thus z = x0 + y0 ∈ A[λ,µ] +B[λ,µ].



358 Keon Chang Lee, Kul Hur and Pyung Ki Lim

Case (ii): Suppose AL(x0) ≤ BL(y0) and AU (x0) ≤ BU (y0). Then as
in Case(i), it follows that x0 ∈ A[λ,µ] and y0 ∈ B[λ,µ]. Thus z = x′0 +y0 ∈
A[λ,µ] +B[λ,µ]. So, in either case, z ∈ A[λ,µ] +B[λ,µ]. Hence (A+B)[λ,µ] ⊂
A[λ,µ] + B[λ,µ]. Now let z ∈ A[λ,µ] + B[λ,µ]. Then there exist x0 ∈ A[λ,µ]

and y0 ∈ B[λ,µ] such that z = x0 + y0. Thus AL(x0) ≥ λ,AU (x0) ≥ µ

and BL(x0) ≥ λ,BU (x0) ≥ µ. So

(A+B)L(z) =
∨

z=x+y

(AL(x) ∧BL(y)) ≥ λ

and

(A+B)U (z) =
∨

z=x+y

(AU (x) ∧BU (y)) ≥ µ.

Thus z ∈ (A + B)[λ,µ]. Hence A[λ,µ] + B[λ,µ] ⊂ (A + B)[λ,µ]. Therefore
(A+B)[λ,µ] = A[λ,µ] +B[λ,µ]. This completes the proof.

Lemma 2.14. Let A,B ∈ D(I)R. and let [λ, µ] ∈ D(I). Then
(A+B)∗[λ,µ] = A∗[λ,µ] +B∗[λ,µ].

Proof. Suppose (A + B)∗[λ,µ] = ∅. Then clearly (A + B)∗[λ,µ] ⊂ A∗[λ,µ] +

B∗[λ,µ]. Suppose (A+B)∗[λ,µ] 6= ∅ and let z ∈ (A+B)∗[λ,µ]. Then

(A+B)L(z) =
∨

z=x+y

(AL(x) ∧BL(y)) > λ

and

(A+B)U (z) =
∨

z=x+y

(AU (x) ∧BU (y)) > µ.

Thus there exist x0, y0 ∈ R with z = x0+y0 such that AL(x0)∧BL(y0) >
λ and AU (x0)∧BU (y0) > µ. So AL(x0) > λ,AU (x0) > µ and BL(y0) >
λ,BU (y0) > µ. Then x0 ∈ A∗[λ,µ] and y0 ∈ B∗[λ,µ]. Thus z = x0 + y0 ∈
A∗[λ,µ] +B∗[λ,µ]. So (A+B)∗[λ,µ] ⊂ A

∗
[λ,µ] +B∗[λ,µ].

Now for each [λ, µ] ∈ D(I1), suppose

(
∨
x∈R

AL(x)) ∧ (
∨
y∈R

BL(y)) ≤ λ

and

(
∨
x∈R

AU (x)) ∧ (
∨
y∈R

BU (y)) ≤ µ.
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Then one of A∗[λ,µ] and B∗[λ,µ] is ∅. Thus A∗[λ,µ] +B
∗
[λ,µ] = ∅ ⊂ (A+B)∗[λ,µ].

Otherwise, A∗[λ,µ] 6= ∅ and B∗[λ,µ] 6= ∅. Then A∗[λ,µ] + B∗[λ,µ] 6= ∅. Let

z ∈ A∗[λ,µ] + B∗[λ,µ]. Then it exist x0 ∈ A∗[λ,µ] and y0 ∈ B∗[λ,µ] such that

z = x0 + y0 and

(A+B)L(z) =
∨

z=x+y

(AL(x) ∧BL(y)) ≥ AL(x0) ∧BL(y0) > λ

and

(A+B)U (z) =
∨

z=x+y

(AU (x) ∧BU (y)) ≥ AU (x0) ∧BU (y0) > µ.

Thus z ∈ (A + B)∗[λ,µ]. So A∗[λ,µ] + B∗[λ,µ] ⊂ (A + B)∗[λ,µ]. Hence

(A+B)∗[λ,µ] = A∗[λ,µ] +B∗[λ,µ]. This completes the proof.

Theorem 2.15. Let A ∈ D(I)R. Then A ∈ IVI(R)[resp. IVLI(R) and
IVRI(R)] if and only if A∗[λ,µ] = ∅ or A∗[λ,µ] ∈ I(R)[resp. LI(R) and RI(R)]

for each [λ, µ] ∈ D(I), where I(R)[resp. LI(R) and RI(R)] denotes the
set of all ideals[resp. left ideals and right ideals] of R.

Proof. We prove this lemma for left ideal, since other cases are similar.
It is clear that A = 0 if and only if A∗[λ,µ] = ∅ for each [λ, µ] ∈ D(I).

Now we assume that A 6= 0.
(⇒): Suppose A ∈ IVLI(R) and let [λ, µ] ∈ D(I). Let x, y ∈ A∗[λ,µ]

and let z ∈ R. Then

AL(x− y) ≥ AL(x) ∧AL(y) (Since A ∈ IVLI(R))

> λ (Since x, y ∈ A∗[λ,µ])

and

AL(x− y) ≥ AL(x) ∧AL(y) > µ.

Also,

AL(zx) ≥ AL(x) (Since A ∈ IVLI(R))

> λ (Since x ∈ A∗[λ,µ])

and

AU (zx) ≥ AU (x) > µ.

Thus x− y ∈ A∗[λ,µ] and zx ∈ A∗[λ,µ]. Hence A∗[λ,µ] ∈ LI(R).

(⇐): Suppose the necessary condition holds. For any x, y ∈ R, let
A(x) = [λ, µ] and let A(y) = [s, t] such that λ ≤ s and µ ≤ t.
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Case (i): Suppose [λ, µ] = [0, 0]. Then

AL(x− y) ≥ λ = AL(x) ∧AL(y), AU (x− y) ≥ µ = AU (x) ∧AU (y)

and

AL(zx) ≥ λ = AL(x) and AU (zx) ≥ µ = AU (x), foreach z ∈ R.
Thus A ∈ IVLI(R).

Case (ii): Suppose [λ, µ] 6= [0, 0]. For each ε > 0, let ε < λ. Then we
have

AL(y) > s− ε ≥ λ− ε, AU (y) > t− ε ≥ µ− ε.
and

AL(x) > λ− ε, AU (x) > µ− ε.
Thus x, y ∈ A∗[λ−ε,µ−ε]. By the hypothesis, A∗[λ−ε,µ−ε] ∈ I(R). So x− y ∈
A∗[λ−ε,µ−ε] and zx ∈ A∗[λ−ε,µ−ε] for each z ∈ R. Then AL(x − y) > λ −
ε, AU (x−y) > µ−ε and AL(zx) > λ−ε, AU (zx) > µ−ε for each z ∈ R.
Since ε is an arbitrary, AL(x− y) ≥ λ = AL(x) ∧ AL(y)), AU (x− y) ≥
µ = AU (x) ∧AU (y) and AL(zx) ≥ λ = AL(x), AU (zx) ≥ µ = AU (x).
Hence A ∈ IVLI(R). This completes the proof.

Proposition 2.16. IVLI[λ0,µ0](R), IVRI[λ0,µ0](R) and IVI[λ0,µ0](R) are
sublattices of IVR(R) and for any A,B ∈ IVLI[λ0,µ0](R)[resp. IVRI[λ0,µ0](R)

and IVI[λ0,µ0](R)], A ∨B = A+B.

Proof. It is easy to see that IVLI[λ0,µ0](R), IVRI[λ0,µ0](R) and IVI[λ0,µ0]

(R) are sublattices of IVR(R). We do only prove that A ∨ B = A + B
for any A,B ∈ IVLI[λ0,µ0](R)(For IVRI[λ0,µ0](R) and IVI[λ0,µ0](R), the
proofs are similar). Let z ∈ R. Then

(A+B)L(z) =
∨

z=x+y

(AL(x) ∧BL(y)) ≤ AL(0) ∧BL(0) = λ0

and

(A+B)U (z) =
∨

z=x+y

(AU (x) ∧BU (y)) ≤ AU (0) ∧BU (0) = µ0.

Thus
∨
z=x+y(A + B)L(z) ≤ λ0 and

∨
z=x+y(A + B)U (z) ≤ µ0. On

the other hand,
∨
z∈R(A + B)L(z) ≥ (A + B)L(0) =

∨
0=x+y(A

L(x) ∧
BL(y)) ≥ AL(0) ∧BL(0) = λ0. By the similar arguments, we have that∨
z∈R(A+B)U (z) ≥ µ0. So



The Lattice of Interval-Valued Fuzzy Ideals of a Ring 361

[
∨
z∈R

(A+B)L(z),
∨
z∈R

(A+B)U (z)] = (A+B)(0) = [λ0, µ0]. (2.3)

For each [λ0, µ0] ∈ D(I1) with λ < λ0 and µ < µ0, (A + B)∗[λ,µ] 6= ∅.
By Lemma 2.14, (A + B)∗[λ,µ] = A∗[λ,µ] + B∗[λ,µ]. Since A,B ∈ IVLI(R),

by Theorem 2.15, A∗[λ,µ], B
∗
[λ,µ] ∈ LI(R). Thus (A+ B)∗[λ,µ] ∈ LI(R). So,

by Theorem 2.15, A+B ∈ IVLI(R). Moreover,

A+B ∈ IVLI[λ0,µ0](R). (2.4)

Let z ∈ R. Then

(A+B)L(z) =
∨

z=x+y

(AL(x) ∧BL(y)) ≥ AL(z) ∧BL(0) = AL(z)

and

(A+B)U (z) =
∨

z=x+y

(AU (x) ∧BU (y)) ≥ AU (z) ∧BU (0) = BU (z).

Thus A ⊂ A+B. By the similar arguments, we have B ⊂ A+B. So

A ⊂ A+B and B ⊂ A+B. (2.5)

Now let C ∈ IVLI(R) such that A ⊂ C and B ⊂ C and let z ∈ R.
Then

(A+B)L(z) =
∨

z=x+y

(AL(x) ∧BL(y)) ≤
∨

z=x+y

(CL(x) ∧ CL(y))

≤
∨

z=x+y

CL(z) (Since CL(z) = CL(x+ y) ≥ CL(x) ∧ CL(y))

= CL(z).

Similarly, we have that (A+B)U (z) ≥ CU (z). Thus

A+B ⊂ C. (2.6)

Hence, by (2.3),(2.4), (2.5) and (2.6), A + B = A ∨ B. This completes
the proof.

Remark 2.16. (a) A ∨ B = A + B is not true in IVR(R), IVLI(R),
IVRI(R) and IVI(R) (See Example 2.17).

(b) As well-known, S + T is not subring in general, where S and T
are subrings of R. Hence A∨B = A+B is not true in IVR[λ0,µ0](R)(See
Example 2. 18).
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Example 2.17. We define two mappings A : R → D(I) and B : R →
D(I) as follows, respectively: For each x ∈ R,

A(x) = [0.4, 0.5] and B(x) = [0.3, 0.6].

Then clearly A,B ∈ IVR(R)[resp. IVLI(R), IVRI(R) and IVI(R)]. More-
over, it is easy to see that (A + B)(0) = [0.3, 0.6] and (A ∨ B)(0) =
[0.4, 0.5].

Example 2.18. Let R = {(a, b) : a, b ∈ Z}, where Z is the ring of inte-
gers. We define the additive operation and the multiplicative operation
on R as follows, respectively: For any (a, b), (c, d) ∈ R,

(a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (0, 0).

Then (R,+, ·) forms a ring with zero (0, 0). Now we define three map-
pings A,B,C : R→ D(I) as follows, respectively: For each (x, y) ∈ R,

A(x, y) =

{
[
1

3
,
3

5
], if y = 0;

[0, 0], if y 6= 0.

B(x, y) =

{
[
1

3
,
3

5
], if x = 0;

[0, 0], if x 6= 0.

C(x, y) =

{
[
1

3
,
3

5
], if x = y;

[0, 0], if x 6= y.

Then it is easy to see that A,B,C ∈ IVI(R). Let (x, y) ∈ R. Then

(A+B)L(x, y) =
∨

(x,y)=(x1,y1)+(x2,y2)

(AL(x1, y1) ∧BL(x2, y2))

≤ AL(x, 0) ∧BL(0, y) =
1

3
and

(A+B)U (x, y) =
∨

(x,y)=(x1,y1)+(x2,y2)

(AU (x1, y1) ∧BU (x2, y2))

≤ AU (x, 0) ∧BU (0, y) =
3

5
.

Thus (C ∧ (A + B))L(x, y) = CL(x, y) ∧ (A + B)L(x, y) = CL(x, y)
and (C ∧ (A + B))U (x, y) = CU (x, y) ∧ (A + B)U (x, y) = CU (x, y). So
C ∧ (A+B) = C. On the other hand,
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(C ∧A)L(x, y) = CL(x, y) ∧AL(x, y) =

{
1

3
, if (x, y) = (0, 0);

0, if (x, y) 6= (0, 0).

and

(C ∧A)U (x, y) = CU (x, y) ∧AU (x, y) =

{
3

5
, if (x, y) = (0, 0);

0, if (x, y) 6= (0, 0).

Also,

(C ∧B)L(x, y) = CL(x, y) ∧BL(x, y) =

{
1

3
, if (x, y) = (0, 0);

0, if (x, y) 6= (0, 0).

and

(C ∧B)U (x, y) = CU (x, y) ∧BU (x, y) =

{
3

5
, if (x, y) = (0, 0);

0, if (x, y) 6= (0, 0).

Thus

((C ∧A) + (C ∧B))L(x, y) =

{
1

3
, if (x, y) = (0, 0);

0, if (x, y) 6= (0, 0).

and

((C ∧A) + (C ∧B))U (x, y) =

{
3

5
, if (x, y) = (0, 0);

0, if (x, y) 6= (0, 0).

So C∧(A+B) 6= (C∧A)+(C∧B). Hence IVI(R) is not distributive.

Lemma 2.19. Let A,B ∈ IVI(R). If A and B have the sup-property,
then the following holds:

(a) A+B has the sup-property.

(b) A ∩B has the sup-property.
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Proof. (a) Let S be any subset of R. Then

∨
z∈S

(A+B)L(z) =
∨
z∈S

(
∨

z=x+y

(AL(x) ∧BL(y)))

=
∨

z∈S,z=x+y

(AL(x) ∧BL(y))

Similarly, we have that

∨
z∈S

(A+B)U (z) =
∨
z∈S

(
∨

z=x+y

(AU (x) ∧BU (y)))

=
∨

z∈S,z=x+y

(AU (x) ∧BU (y)).

Let us define two subsets X(S) and Y (S) of R by

X(S) = {x ∈ R : z ∈ S, z = x + y for some y ∈ R such that
AL(x) ≤ BL(y) and AU (x) ≤ BU (y)},
Y (S) = {y ∈ R : z ∈ S, z = x + y for some x ∈ R such that

AL(x) ≥ BL(y) and AU (x) ≥ BU (y)}.
Since A and B have the sup-property, there exist x′ ∈ X(S) and y

′′ ∈
Y (S) such that

AL(x′) =
∨

x∈X(S)

(AL(x), AU (x′)) =
∨

x∈X(S)

AU (x)

and (2.7)

BL(y′′) =
∨

y∈Y (S)

(BL(y), BU (y′′)) =
∨

y∈Y (S)

BU (y).

Since x′ ∈ X(S), there exists z1 ∈ S such that z1 = x′ + y′ for some
y′ ∈ R satisfying AL(x′) ≤ BL(y′) and AU (x′) ≤ BU (y′). Also, since

y
′′ ∈ Y (S), there exists z2 ∈ S such that z2 = x

′′
+ y

′′
for some x

′′ ∈ R
satisfying AL(x

′′
) ≥ BL(y

′′
) and AU (x

′′
) ≥ BU (y

′′
).

On the other hand, we have either AL(x
′
) ≥ BL(y

′′
), AU (x

′
) ≥

BU (y
′′
) or AL(x

′
) ≤ BL(y

′′
), AU (x

′
) ≤ BU (y

′′
).
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Case (i): Suppose AL(x
′
) ≥ BL(y

′′
) and AU (x

′
) ≥ BU (y

′′
). Then∨

z∈S,z=x+y

(AL(x) ∧BL(y)) =
∨

x∈X(S)

(AL(x) ∧BL(y)) ∨ (
∨

y∈Y (S)

(AL(x) ∧BL(y)))

(As in Lemma 2.13)

= (
∨

x∈X(S)

AL(x)) ∨ (
∨

y∈Y (S)

BL(y))

= AL(x
′
) ∨BL(y

′′
) (By (2.7))

= AL(x
′
). (By the hypothesis)

Similarly, we have that
∨
z∈S,z=x+y(A

U (x) ∧BU (y)) = AU (x′). Thus∨
z∈S

(A+B)L(z) = AL(x′)

and (2.8)∨
z∈S

(A+B)U (z) = AU (x′).

Now we show that∨
z∈S

(A+B)L(z) = (A+B)L(z1) and
∨
z∈S

(A+B)U (z) = (A+B)U (z1).

For decompositions z1 = x
′
i + y

′
i, we have

(A+B)L(z1) =
∨

z1=x
′
i+y
′
i

(AL(x
′
i) ∧BL(y

′
i))

and
(A+B)U (z1) =

∨
z1=x

′
i+y
′
i

(AU (x
′
i) ∧BU (y

′
i)).

Again, we construct subset X(z1) and Y (z1) of R as follows: X(z1) =

{x′i ∈ R : z1 = x
′
i + y

′
i for some y

′
i ∈ R such that AL(x

′
i) ≤ BL(y

′
i) and

AU (x
′
i) ≤ BU (y

′
i)},

Y (z1) = {y′i ∈ R : z1 = x
′
i + y

′
i for some x

′
i ∈ R such that AL(x

′
i) ≥

BL(y
′
i) and AU (x

′
i) ≥ BU (y

′
i)}. Then∨

z1=x
′
i+y
′
i

(AL(x
′
i) ∧BL(y

′
i)) = (

∨
x
′
i∈X(z1)

(AL(x
′
i) ∧BL(y

′
i))) ∨ (

∨
x
′
i∈X(z1)

(AL(x
′
i) ∧

BL(y
′
i))) (As in Lemma 2.13)

= (
∨

x
′
i∈X(z1)

(AL(x
′
i))) ∨ (

∨
y
′
i∈Y (z1)

(BL(y
′
i))).
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By the similar arguments, we have that∨
z1=x

′
i+y
′
i

(AU (x
′
i) ∧BU (y

′
i)) = (

∨
x
′
i∈X(z1)

(AU (x
′
i))) ∨ (

∨
y
′
i∈Y (z1)

(BU (y
′
i))).

Since X(z1) ⊂ X(S) and x
′
i ∈ X(z1),

AL(x′) ≤
∨

x
′
i∈X(z1)

AL(x
′
i) ≤

∨
x∈X(S)

AL(x) = AL(x
′
i)

and

AU (x′) ≥
∨

x
′
i∈X(z1)

AU (x
′
i) ≥

∨
x∈X(S)

AU (x) = AU (x
′
i).

Thus
∨

x
′
i∈X(z1)

AL(x
′
i) = AL(x

′
i) and

∨
x
′
i∈X(z1)

AU (x
′
i) = AU (x

′
i). Also,

since Y (z1) ⊂ Y (S) and y
′′ ∈ Y (z1), we have∨

y
′
i∈Y (z1)

BL(y
′
i) = BL(y

′′
i ) and

∨
y
′
i∈Y (z1)

BU (y
′
i) = BU (x

′′
i ).

By the hypothesis,∨
x
′
i∈X(z1)

AL(x
′
i) = AL(x

′
i) ≥ BL(y

′′
i ) =

∨
y
′
i∈Y (z1)

BL(y
′
i)

and ∨
x
′
i∈X(z1)

AU (x
′
i) = AU (x

′
i) ≥ BU (y

′′
i ) =

∨
y
′
i∈Y (z1)

BU (y
′
i).

Thus

(A+B)L = (
∨

x
′
i∈X(z1)

AL(x
′
i)) ∨ (

∨
y
′
i∈Y (z1)

BL(y
′
i)) = AL(x

′
)

and (2.9)

(A+B)U = (
∨

x
′
i∈X(z1)

AU (x
′
i)) ∨ (

∨
y
′
i∈Y (z1)

BU (y
′
i)) = AU (x

′
).

So, by (2.8) and (2.9),∨
z∈S

(A+B)L(z) = (A+B)L(z1) and
∨
z∈S

(A+B)U (z) = (A+B)U (z1).
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Case (ii): Suppose AL(x′) ≤ BL(y
′′
) and AU (x′) ≤ BU (y

′′
). By

proceeding in a similar way as in Case (i), we can verify that∨
z∈S

(A+B)L(z) = (A+B)L(z2) and
∨
z∈S

(A+B)U (z) = (A+B)U (z2)

for some z2 ∈ S. Hence, in all, A+B has the sup-property.
(b) The proof is left as an exercise for the reader. This completes the

proof.

Proposition 2.20. Let IVIs[λ0,µ0](R) be the set of all IVIs with the
sup-property and same tip ”[λ0, µ0]”. Then IVIs[λ0,µ0](R) forms a sub-
lattice of IVI[λ0,µ0](R) and hence of IVI(R).

Proof. Let A,B ∈ IVIs[λ0,µ0](R). We show that A ∨B = A+B. Since
A,B ∈ IVI(R), by Lemma 2.13, A[λ,µ] and B[λ,µ] are ideals for each

[λ, µ] ∈ D(I) with λ ≤ (A+ B)L(0) = λ0 µ ≤ (A+ B)U (0) = µ0. Then
A[λ,µ] +B[λ,µ] is an ideal of R. Since A and B have the sup-property, by
Lemma 2.13, A[λ,µ] +B[λ,µ] = (A+B)[λ,µ]. Thus (A+B)[λ,µ] is an ideal
of R. So, by Theorem 2.12, A + B ∈ IVI(R). Since A and B have the
same tip ”[λ0, µ0]”, we have

(A+B)L(z) = (
∨

z=x+y

AL(x) ∧BL(y) ≥ AL(z) ∧BL(0) = AL(z)

and

(A+B)U (z) = (
∨

z=x+y

AU (x) ∧BU (y) ≥ AU (z) ∧BU (0) = AU (z)

for each z ∈ S. Then A ⊂ A + B. By the similar arguments, we have
B ⊂ A+B.

Now let C ∈ IVI(R) containA andB and let z ∈ S such that z = x+y.
Then

CL(z) = CL(x+y) ≥ CL(x)∧CL(y) and CU (z) = CU (x+y) ≥ CU (x)∧CU (y).

Thus

(A+B)L(z) =
∨

z=x+y

(AL(x) ∧BL(y))

≤
∨

z=x+y

(CL(x) ∧ CL(y)) (Since A ⊂ C and B ⊂ C)

= CL(z).



368 Keon Chang Lee, Kul Hur and Pyung Ki Lim

Similarly, we have that (A + B)U (z) ≤ CU (z). So A + B ⊂ C. Hence
A+B is the least interval-valued fuzzy ideal containing A and B. There-
fore A+B = A ∨B. On the other hand, by Lemma 2.19(a), A ∨B has
the sup-property. Thus A ∨ B ∈ IVIs[λ0,µ0](R). So IVIs[λ0,µ0](R) forms
a sublattice of IVI[λ0,µ0](R) and hence of IVI(R). This completes the
proof.

The following lattice diagram is the interrelationship of different sub-
lattices of the lattice IVR(R):

Figure 1

Now we obtain an interval-valued fuzzy analog of a well-known result
that the set of ideals of a ring forms a modular lattice.

3. Interval-valued fuzzy ideals and modularity

In the previous section, we discussed various sublattices of the lattice
of interval-valued fuzzy ideals of a ring. Hence, we obtain an interval-
valued fuzzy analog of a well known result that the set of ideals of a ring
forms a modular lattice.
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Lemma 3.1. Let A ∈ IVR(R). If AL(x) < AL(y) and AU (x) < AU (y)
for some x, y ∈ R, then A(x+ y) = A(x).

Proof. Since A ∈ IVR(R),

AL(x+ y) ≥ AL(x) ∧AL(y) = AL(x)

and
AU (x+ y) ≥ AU (x) ∧AU (y) = AU (x).

Assume that AL(x+ y) > AL(x) and AU (x+ y) > AU (x). Then

AL(x) = AL(y + x− y) ≥ AL(x+ y) ∧AL(y) > AL(x)

and

AU (x) = AU (y + x− y) ≥ AU (x+ y) ∧AU (y) > AU (x).

This contradicts the fact that A(x) = A(x). Hence A(x+y) = A(x).

Proposition 3.2. The sublattice IVIs[λ0,µ0](R) is modular.

Proof. Since the modular inequality is valid for every lattice, for any
A,B,C ∈ IVIs[λ0,µ0](R) with B ⊂ A, we have that B ∨ (A ∧ C) ⊂
A ∧ (B ∨ C).
Assume that A ∧ (B ∨C) 6= B ∨ (A ∧C). Then there exists z ∈ R such
that

(A ∧ (B ∨ C))L(z) > (B ∨ (A ∧ C))L(z)

and
(A ∧ (B ∨ C))U (z) > (B ∨ (A ∧ C))U (z).

Thus, by Proposition 2.20,

AL(z) ∧ (B + C)L(z) > (B + (A ∩ C))L(z)

and
AU (z) ∧ (B + C)U (z) > (B + (A ∩ C))U (z).

So
AL(z) > (B + (A ∩ C))L(z), AU (z) > (B + (A ∩ C))U (z)

and (3.1)

(B + C)L(z) > (B + (A ∩ C))L(z), (B + C)U (z) > (B + (A ∩ C))U (z).

Then there exist x0, y0 ∈ R with z = x0 + y0 such that

BL(x0) ∧ CL(y0) > (B + (A ∩ C)L(z)

and
BU (x0) ∧ CU (y0) > (B + (A ∩ C)U (z).
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Thus

BL(x0) > (B + (A ∩ C))L(z), BU (x0) > (B + (A ∩ C))U (z) (3.2)

and

CL(y0) > (B + (A ∩ C))L(z), CU (y0) > (B + (A ∩ C))U (z). (3.3)

On the other hand,

(B + (A ∩ C))L(z) =
∨

z=x+y

(BL(x) ∧ (A ∩ C)L(y)))

≥ (BL(x0) ∧ (A ∩ C)L(y0))

= BL(x0) ∧AL(y0) ∧ CL(y0).

Similarly, we have that (B+ (A∩C))U (z) ≥ BU (x0)∧AU (y0)∧CU (y0).
Then, by (3.1),(3.2),(3.3),

AL(z), BL(x0), CL(y0) > BL(x0) ∧AL(y0) ∧ CL(y0)

and

AU (z), BU (x0), CU (y0) > BU (x0) ∧AU (y0) ∧ CU (y0).

Thus

BL(x0) ∧AL(y0) ∧ CL(y0) = AL(y0)

and

BU (x0) ∧AU (y0) ∧ CU (y0) = AU (y0).

So

AL(−y0) = AL(y0) < AL(x0 + y0) = AL(z)

and

AU (−y0) = AU (y0) < AU (x0 + y0) = AU (z).

By Lemma 3.1,

AL(y0) = AL(x0 + y0 − y0) = AL(x0)

and

AU (y0) = AU (x0 + y0 − y0) = AU (x0).

Then

BL(x0) > AL(y0) = AL(x0)

and

BU (x0) > AU (y0) = AU (x0).

This contradicts the fact that B ⊂ A. Hence A∧ (B∨C) = B∨ (A∧C).
Therefore IVIs[λ0,µ0](R) is modular.This completes the proof.



The Lattice of Interval-Valued Fuzzy Ideals of a Ring 371

Remark 3.3. As a special case, IVI[1,1](R) is a complete sublattice of
IVI(R) and IVIs[1,1](R) is a modular sublattice of IVI(R).

Proposition 3.4.(The generalization of Proposition 3.2) IVLI[λ0,µ0](R),
IVRI[λ0,µ0](R) and IVI[λ0,µ0](R) are all modular.

Proof. The proofs are similar to Proposition 3.2.

Proposition 3.5. IVI(R) is bounded.

Proof. It is clear that 0 ∈ IVI(R) and 1 ∈ IVI(R). Moreover, 0 ⊂ A ⊂ 1
for each A ∈ IVI(R). Hence IVI(R) is bounded.

Proposition 3.6. (a) IVI(R) is not complemented.

(b) IVI(R) has no atoms.

(c) IVI(R) has no dual atoms.

Proof. (a) We define a mapping A : R → D(I) as follows: For each

x ∈ R,A(x) = [
1

2
,
1

2
]. Then clearly [A,Ac] ∈ IVI(R). But A ∪ Ac 6= 1̃

and A ∩ Ac 6= 0̃. Thus A has no complement in IVI(R). Hence IVI(R)
is not complemented.

(b) Suppose A ∈ IVI(R) with A 6= 0̃. We define a mapping B :

R → D(I) as follows: For each x ∈ R,BL(x) =
1

2
AL(x) and BU (x) =

1

2
AU (x). Then clearly B ∈ IVI(R). Moreover, 0̃ $ B $ A. Hence IVI(R)

has no atoms.

(c) Suppose A ∈ IVI(R) with A 6= 1̃. We define a mapping B : R →
D(I) as follows: For each x ∈ R,

BL(x) =
1

2
+

1

2
AL(x) and BU (x) =

1

2
+

1

2
AU (x).

Then clearly A $ B $ 1̃.
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Now let x, y ∈ R. Then

BL(xy) =
1

2
+

1

2
AL(xy)

≥ 1

2
+

1

2
(AL(x) ∨AL(y) (Since A ∈ IVI(R))

= (
1

2
+

1

2
AL(x)) ∨ (

1

2
+

1

2
AL(y)).

= BL(x) ∨BL(y).

By the similar arguments, we have that BU (xy) ≥ BU (x)∨BU (y). Also,

BL(x− y) =
1

2
+

1

2
AL(x− y)

≥ 1

2
+

1

2
(AL(x) ∧AL(y) (Since A ∈ IVI(R))

= (
1

2
+

1

2
AL(x)) ∧ (

1

2
+

1

2
AL(y)).

= BL(x) ∧BL(y).

By the similar arguments, we have that BU (x − y) ≥ BU (x) ∧ BU (y).
So B ∈ IVI(R). Hence IVI(R) has no dual atoms.
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