THE LATTICE OF INTERVAL-VALUED FUZZY IDEALS OF A RING

KEON CHANG LEE, KUL HUR AND PYUNG KI LIM*

Abstract. We investigate the lattice structure of various sublattices of the lattice of interval-valued fuzzy subrings of a given ring. We prove that a special class of interval-valued fuzzy ideals of a ring. Finally, we show that the lattice of interval-valued fuzzy ideals of R is not complemented [resp. has no atoms (dual atoms)].

1. Introduction and Preliminaries

The concept of a fuzzy set was introduced by Zadeh[7], and then he introduced the notion of interval-valued fuzzy sets as a generalization of fuzzy sets in 1975[8]. After that time, Biswas[2] applied it to group theory, and Montal and Samanta[6] to topology. Recently, Cheong and Hur[3] investigated interval-valued ideals and bi-ideals of a subgroup, Kang and Hur[5] applied the concept of interval-valued fuzzy sets to algebra. Moreover, Choi et.al[4] introduced the notion of interval-valued smooth topological spaces and studied some of it's properties.

In this paper, we investigate the lattice of various sublattices of the lattice of interval-valued fuzzy subgroups of a given ring. We prove that a special class of interval-valued fuzzy ideals forms a modular sublattice of the lattice of interval-valued fuzzy ideals of a ring. Finally, we show that the lattice of interval-valued fuzzy ideals of R is not complemented [resp. has no atoms(dual atoms)].

Now, we will list some basic concepts and two results which are needed in the later sections.

Received May 24, 2012. Accepted August 1, 2012.

²⁰⁰⁰ Mathematics Subject Classification. 03F55, 06C05, 16D25.

Key words and phrases. Lattice, modularity, interval-valued fuzzy subring, interval-valued fuzzy left(right)ideal, (strong) level subset.

^{*} Corresponding Author

This paper was supported by Wonkwang University in 2012.

Let D(I) be the set of all closed subintervals of the unit interval I = [0, 1]. The elements of D(I) are generally denoted by capital letters M, N, \dots , and note that $M = [M^L, M^U]$, where M^L and M^U are the lower and the upper end points respectively. Especially, we denoted , $\mathbf{0}$ $= [0,0], 1 = [1,1], \text{ and } a = [a,a] \text{ for every } a \in (0,1).$ We also note that

- (i) $(\forall M, N \in D(I))$ $(M = N \Leftrightarrow M^L = N^L, M^U = N^U)$,
- (ii) $(\forall M, N \in D(I))$ $(M \le N \Leftrightarrow M^L \le N^L, M^U \le N^U)$.

For every $M \in D(I)$, the complement of M, denoted by M^c , is defined by $M^c = 1 - M = [1 - M^U, 1 - M^L]$ (See [6]).

Definition 1.1 [6, 8]. A mapping $A: X \to D(I)$ is called an *interval*valued fuzzy set (in short, IVS) in X and is denoted by $A = [A^L, A^U]$.

Thus for each $x \in X$, $A(x) = [A^{L}(x), A^{U}(x)]$, where $A^{L}(x)$ [resp. $A^{U}(x)$ is called the lower [resp. upper] end point of x to A. For any $[a,b] \in D(I)$, the interval-valued fuzzy set A in X defined by A(x) =[a,b] for each $x \in X$ is denoted by [a,b] and if a=b, then the IVS [a,b] is denoted by simply \tilde{a} . In particular, $\tilde{0}$ and $\tilde{1}$ denote the intervalvalued fuzzy empty set and the interval-valued fuzzy whole set in X, respectively.

We will denote the set of all IVSs in X as $D(I)^X$. It is clear that $[A, A] \in D(I)^X$ for each $A \in I^X$.

Definition 1.2 [6]. Let $A, B \in D(I)^X$ and let $\{A_{\alpha}\}_{{\alpha} \in \Gamma} \subset D(I)^X$. Then

- (a) $A \subset B$ iff $A^L \leq B^L$ and $A^U \leq B^U$.
- (b) A = B iff $A \subset B$ and $B \subset A$.
- (c) $A^c = [1 A^U, 1 A^L].$ (d) $A \cup B = [A^L \vee B^L, A^U \vee B^U].$
- $(\mathbf{d})' \bigcup A_{\alpha} = [\bigvee A_{\alpha}^{L}, \bigvee A_{\alpha}^{U}].$
- (e) $\begin{array}{l}
 A_{\alpha} = [\bigvee A_{\alpha}, \bigvee A_{\alpha}]. \\
 \alpha \in \Gamma \\
 \alpha \in \Gamma \\
 \alpha \in \Gamma
 \end{array}$ (e) $A_{\alpha} = [\bigwedge A_{\alpha}^{L}, A^{U} \wedge B^{U}]. \\
 A_{\alpha} = [\bigwedge A_{\alpha}^{L}, \bigwedge A_{\alpha}^{L}, A^{U}_{\alpha}].$

Result 1.A [6, Theorem 1]. Let $A, B, C \in D(I)^X$ and let $\{A_\alpha\}_{\alpha \in \Gamma} \subset$ $D(I)^X$. Then

- (a) $\tilde{0} \subset A \subset \tilde{1}$.
- (b) $A \cup B = B \cup A$, $A \cap B = B \cap A$.
- (c) $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$.
- (d) $A, B \subset A \cup B$, $A \cap B \subset A, B$.

$$\begin{split} & (\mathbf{e}) \ A \cap (\bigcup_{\alpha \in \Gamma} A_{\alpha}) = \bigcup_{\alpha \in \Gamma} (A \cap A_{\alpha}). \\ & (\mathbf{f}) \ A \cup (\bigcap_{\alpha \in \Gamma} A_{\alpha}) = \bigcap_{\alpha \in \Gamma} (A \cup A_{\alpha}). \\ & (\mathbf{g}) \ (\tilde{\mathbf{0}})^c = \tilde{\mathbf{1}} \ , \ (\tilde{\mathbf{1}})^c = \tilde{\mathbf{0}}. \\ & (\mathbf{h}) \ (A^c)^c = A. \\ & (\mathbf{i}) \ (\bigcup_{\alpha \in \Gamma} A_{\alpha})^c = \bigcap_{\alpha \in \Gamma} A_{\alpha}^c \ , \ (\bigcap_{\alpha \in \Gamma} A_{\alpha})^c = \bigcup_{\alpha \in \Gamma} A_{\alpha}^c. \end{split}$$

It is obvious that $(D(I)^X, \cup, \cap)$ is complete lattice satisfying the De-Morgan's Laws.

Definition 1.3 [2]. Let A be an IVS in a group G. Then A is called an interval-valued fuzzy subgroup (in short, IVG) in G if it satisfies the conditions: For any $x, y \in G$,

- (a) $A^{L}(xy) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(xy) \geq A^{U}(x) \wedge A^{U}(y)$. (b) $A^{L}(x^{-1}) \geq A^{L}(x)$ and $A^{U}(x^{-1}) \geq A^{U}(x)$.

We will denote the set of all IVGs of G as IVG(G).

Result 1.B [2, Proposition 3.1]. Let A be an IVG in a group G.

- (a) $A(x^{-1}) = A(x), \forall x \in G$.
- (b) $A^{L}(e) \geq A^{L}(x)$ and $A^{U}(e) \geq A^{U}(x), \forall x \in G$, where e is the identity of G.

Throughout this paper, $L = (L, +, \cdot)$ denotes a lattice, where "+" and "." denote the sup and inf, respectively. For a general background of lattice theory, we refer to [1]. Moreover, we will denote by R a ring having the zero "0", with respect to binary operations "+" and ".".

2. Lattice of interval-valued fuzzy subrings

Definition 2.1 [5]. Let R be a ring and let $A \in D(I)^R$. Then A is called an interval-valued fuzzy subring (in short, IVR) of R if it satisfies the following conditions: For any $x, y \in R$,

- (i) $A^{L}(x+y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x+y) \geq A^{U}(x) \wedge A^{U}(y)$. (ii) $A^{L}(-x) \geq A^{L}(x)$ and $A^{U}(-x) \geq A^{U}(x)$. (iii) $A^{L}(xy) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(xy) \geq A^{U}(x) \wedge A^{U}(y)$.

We will denote the set of all IVRs of R as IVR(R).

From Result 1.B, it can be easily verified that if $A \in IVR(R)$, $A^{L}(x) \le$ $A^{L}(0), A^{U}(x) \leq A^{U}(0)$ and A(x) = A(-x) for each $x \in R$. We shall call A(0) as the *tip* of the interval-valued fuzzy subring A.

Result 2.A [5, Proposition 6.2]. Let $A \in D(I)^R$. Then $A \in IVR(R)$ if and only if for any $x, y \in R$,

- (a) $A^{L}(x-y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x-y) \geq A^{U}(x) \wedge A^{U}(y)$. (b) $A^{L}(xy) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(xy) \geq A^{U}(x) \wedge A^{U}(y)$.

Proposition 2.2. let $\{A_{\alpha}\}_{{\alpha}\in\Gamma}\subset IVR(R)$. Then $\cap_{{\alpha}\in\Gamma}A_{\alpha}\in IVR(R)$.

Proof. let $A = \bigcap_{\alpha \in \Gamma} A_{\alpha}$ and let $x, y \in R$. Then

$$\begin{split} A^L(x-y) &= \bigwedge_{\alpha \in \Gamma} A^L_{\alpha}(x-y) \geq \bigwedge_{\alpha \in \Gamma} (A^L_{\alpha}(x) \wedge A^L_{\alpha}(y)) \text{ (Since } A^{\alpha} \in \text{IVR}(\mathbf{R})) \\ &= (\bigwedge_{\alpha \in \Gamma} A^L_{\alpha}(x)) \wedge (\bigwedge_{\alpha \in \Gamma} A^L_{\alpha}(y)) = (\bigcap_{\alpha \in \Gamma} A_{\alpha})^L(x) \wedge (\bigcap_{\alpha \in \Gamma} A_{\alpha})^L(y) \\ &= A^L(x) \wedge A^L(y). \end{split}$$

By the similar arguments, we have that $A^{U}(x-y) \geq A^{U}(x) \wedge A^{U}(y)$. Similarly, we have $A^L(xy) \geq A^L(x) \wedge A^L(y)$ and $A^U(xy) \geq A^U(x) \wedge A^U(y)$. Hence, by Result 2.A, $A = \bigcap A_{\alpha} \in IVR(R)$.

Definition 2.3. Let $A \in IVR(R)$. Then an interval-valued fuzzy subring generated by A is the least interval-valued fuzzy subring of R containing A and denoted by (A).

Here, we construct the lattice of interval-valued fuzzy subrings such as interval-valued fuzzy (left, right) ideals. The common feature of all these constructions is that the intersection of an arbitrary family of interval-valued fuzzy subrings is always an interval-valued fuzzy subring(See proposition 2.2). Therefore, we consider the inf of a family of interval-valued fuzzy subrings to be their intersection, whereas the union of two interval-valued fuzzy subrings may not be an interval-valued fuzzy subring. Hence, we shall always be talking the sup of a family of intervalvalued fuzzy subrings to be the interval-valued fuzzy subring generated by the union of that family. The outcome of the above discussion can be described can be described by the following propositions.

Proposition 2.4. IVR(R) forms a complete lattice under the ordering of interval-valued fuzzy set inclusion \subset .

Definition 2.5 [5]. Let $A \in IVR(R)$. Then A is called an:

- (1) interval-valued fuzzy left ideal (in short, IVLI) in R if $A^L(xy) \ge A^L(y)$ and $A^U(xy) \ge A^U(y)$ for any $x, y \in R$.
- (2) interval-valued fuzzy right ideal (in short, IVRI) in X if $A^L(xy) \ge A^L(x)$ and $A^U(xy) \ge A^U(x)$ for any $x, y \in R$.
- (3) interval-valued fuzzy ideal (in short, IVI) in X if it both an IVLI and an IVRI in R.

We will denote the set of all IVIs [resp. IVLIs and IVRIs] of R as IVI(R) [resp. IVLI(R) and IVRI(R)]. In particular, IVI_[\lambda_0,\mu_0](R) denotes the set of all IVIs with the same tip "[\lambda_0,\mu_0]". It is clear that IVI(R)=IVLI(R) \cap IVRI(R).

Result 2.B [5, Proposition 6.5]. Let $A \in D(I)^R$. Then $A \in IVI(R)$ [resp. IVLI(R) and IVRI(R)] if and only if for any $x, y \in R$,

- (a) $A^L(x-y) \ge A^L(x) \wedge A^L(y)$ and $A^U(x-y) \ge A^U(x) \wedge A^U(y)$.
- (b) $A^L(xy) \geq A^L(x) \vee A^L(y)$ and $A^U(xy) \geq A^U(x) \vee A^U(y)$ [resp. $A^L(xy) \geq A^L(y)$, $A^U(xy) \geq A^U(y)$ and $A^L(xy) \geq A^L(x)$, $A^U(xy) \geq A^U(x)$].

The proof of the following result is similar to Proposition 2.2.

Proposition 2.6. Let $\{A_{\alpha}\}_{{\alpha}\in\Gamma}\subset IVI(R)$ [resp. IVLI(R) and IVRI(R)]. Then $\bigcap_{{\alpha}\in\Gamma}A_{\alpha}\in IVI(R)$ [resp. IVLI(R) and IVRI(R)].

Definition 2.7. Let $A \in D(I)^R$. Then the IVI[resp. IVLI and IVRI] generated by A is the least IVI[resp. IVLI and IVRI] of R containing A and denoted by (A).

The following is easily verified.

Proposition 2.8. (a) IVI(R)[resp. IVLI(R) and IVRI(R)] is a meet complete sublattice of IVR(R).

(b) $IVI_{[\lambda,\mu]}(R)$ is a complete sublattice of IVR(R).

Definition 2.9[2,5]. Let X be a set and let $A \in D(I)^X$. Then A is said to have the *sup-property* if for each $Y \in P(X)$, there exists $y_0 \in Y$ such that $A(y_0) = [\bigvee_{x \in Y} A^L(x), \bigvee_{x \in Y} A^U(x)]$, where P(X) denotes the

power set of X.

Definition 2.10. Let $A, B \in D(I)^R$. Then the *sum* A + B and the *product* $A \circ B$ of A and B are defined as follows, respectively: For each $z \in R$.

(i)
$$(A + B)(z) = [\bigvee_{z=x+y} (A^L(x) \wedge B^L(y)), \bigvee_{z=x+y} (A^L(x) \wedge B^U(y))],$$

(ii)

$$(A \circ B)(z) = \begin{cases} \left[\bigvee_{z=xy} (A^L(x) \wedge B^L(y)), \bigvee_{z=xy} (A^U(x) \wedge B^U(y)) \right], & \text{if } z = xy; \\ [0,0], & \text{otherwise.} \end{cases}$$

Definition 2.11. Let X be a set, let $A \in D(I)^X$ and let $[\lambda, \mu] \in D(I)$.

- (i) [5] The set $A_{[\lambda,\mu]}=\{x\in X:A^L(x)\geq\lambda \text{ and }A^U(x)\geq\mu\}$ is called a $[\lambda,\mu]$ -level-subset of A.
- (ii) The set $A^*_{[\lambda,\mu]} = \{x \in X : A^L(x) > \lambda \text{ and } A^U(x) > \mu\}$ is called a strong $[\lambda,\mu]$ -level-subset of A.

The following is the immediate result of Propositions 4.16 and 4.17 in [5].

Theorem 2.12. Let $A \in D(I)^R$. Then $A \in IVI(R)$ if and only if $A_{[\lambda,\mu]}$ is an ideal for each $[\lambda,\mu] \in D(I)$ with $\lambda \leq A^L(0)$ and $\mu \leq A^U(0)$.

Lemma 2.13. Let $A, B \in IVI(R)$. If A and B have the sup-property, then $(A+B)_{[\lambda,\mu]} = A_{[\lambda,\mu]} + B_{[\lambda,\mu]}$ for each $[\lambda,\mu] \in D(I)$.

Proof. Let $z \in (A+B)_{[\lambda,\mu]}$. Then

$$(A+B)^{L}(z) = \bigvee_{z=x+y} (A^{L}(x) \wedge B^{L}(y))$$
(2.1)

and

$$(A+B)^U(z) = \bigvee_{z=x+y} (A^U(x) \wedge B^U(y)).$$

For each decomposition z=x+y, we have either $A^L(x) \leq B^L(y)$ and $A^U(x) \leq B^U(y)$ or $A^L(x) \geq B^L(y)$ and $A^U(x) \geq B^U(y)$. This contradiction leads as to define the following subsets of R:

 $X(z) = \{x \in R : z = x + y \text{ for some } y \in R \text{ such that } A^L(x) \leq B^L(y) \text{ and } A^U(x) \leq B^U(y)\},$

 $Y(z)=\{x\in R:z=x+y \text{ for some }y\in R \text{ such that }A^L(x)\geq B^L(y) \text{ and }A^U(x)\geq B^U(y)\},$

 $X^*(z) = \{x \in R : z = x + y \text{ for some } y \in R \text{ such that } A^L(x) \ge B^L(y) \text{ and } A^U(x) \ge B^U(y)\}.$

Then clearly $R = X(z) \cup X^*(z)$. Since A and B have the sup-property, there exist $x_0 \in X(z)$ and $y_0 \in Y(z)$ such that

$$A^{L}(x_{0}) = \bigvee_{x \in X(z)} A^{L}(x), \ A^{U}(x_{0}) = \bigvee_{x \in X(z)} A^{U}(x)$$
(2.2)

and

$$B^{L}(y_0) = \bigvee_{y \in Y(z)} B^{L}(y), \ B^{U}(y_0) = \bigvee_{y \in Y(z)} B^{U}(y).$$

Since $x_0 \in X(z)$, there exists $y_0' \in R$ with $z = x_0 + y_0'$ such that $A^L(x_0) \le B^L(y_0')$ and $A^U(x_0) \le B^U(y_0')$.

Since $y_0 \in Y(z)$, there exists $x_0' \in R$ with $z = x_0' + y_0$ such that $A^L(x_0') \ge B^L(y_0)$ and $A^U(x_0') \ge B^U(y_0)$.

But for $A(x_0)$ and $B(y_0)$, we have either $A^L(x_0) \ge B^L(y_0)$ and $A^U(x_0) \ge B^U(y_0)$ or $A^L(x_0) \le B^L(y_0)$ and $A^U(x_0) \le B^U(y_0)$.

Case (i): Suppose $A^L(x_0) \geq B^L(y_0)$ and $A^U(x_0) \geq B^U(y_0)$. Then

$$\bigvee_{z=x+y} (A^L(x) \wedge B^L(y)) = \bigvee_{x \in R} (A^L(x) \wedge B^L(z-x)) \text{ (Since } y = z-x)$$

$$= (\bigvee_{x \in X(z)} (A^L(x) \wedge B^L(z-x))) \vee (\bigvee_{x \in X^*(z)} (A^L(x) \wedge B^L(z-x))) \text{ (Since } R = X(z) \cup X^*(z))$$

$$= (\bigvee_{x \in X(z)} (A^L(x) \wedge B^L(y))) \vee (\bigvee_{x \in Y(z)} (A^L(x) \wedge B^L(z-x)))$$

$$= (\bigvee_{x \in X(z)} A^L(x) \vee (\bigvee_{x \in Y(z)} B^L(y)))$$

$$= A^L(x_0) \wedge B^L(y_0) \text{ (By (2.2)}$$

$$= A^L(x_0). \text{ (By the hypothesis)}$$

Similarly, we have that $\bigvee_{z=x+y} (A^U(x) \wedge B^U(y)) = A^U(x_0)$. Thus, by (2.1), $A^L(x_0) = (A+B)^L(z) \ge \lambda$ and $A^U(x_0) = (A+B)^U(z) \ge \mu$. So $x_0 \in A_{[\lambda,\mu]}$. Since $B^L(y_0') \ge A^L(x_0)$ and $B^U(y_0') \ge A^U(x_0)$, $B^L(y_0') \ge \lambda$ and $B^U(y_0') \ge \mu$. Then $y_0' \in B_{[\lambda,\mu]}$. Thus $z = x_0 + y_0 \in A_{[\lambda,\mu]} + B_{[\lambda,\mu]}$.

Case (ii): Suppose $A^L(x_0) \leq B^L(y_0)$ and $A^U(x_0) \leq B^U(y_0)$. Then as in Case(i), it follows that $x_0 \in A_{[\lambda,\mu]}$ and $y_0 \in B_{[\lambda,\mu]}$. Thus $z = x_0' + y_0 \in A_{[\lambda,\mu]} + B_{[\lambda,\mu]}$. So, in either case, $z \in A_{[\lambda,\mu]} + B_{[\lambda,\mu]}$. Hence $(A+B)_{[\lambda,\mu]} \subset A_{[\lambda,\mu]} + B_{[\lambda,\mu]}$. Now let $z \in A_{[\lambda,\mu]} + B_{[\lambda,\mu]}$. Then there exist $x_0 \in A_{[\lambda,\mu]}$ and $y_0 \in B_{[\lambda,\mu]}$ such that $z = x_0 + y_0$. Thus $A^L(x_0) \geq \lambda$, $A^U(x_0) \geq \mu$ and $B^L(x_0) \geq \lambda$, $B^U(x_0) \geq \mu$. So

$$(A+B)^L(z) = \bigvee_{z=x+y} (A^L(x) \wedge B^L(y)) \ge \lambda$$

and

$$(A+B)^U(z) = \bigvee_{z=x+y} (A^U(x) \wedge B^U(y)) \ge \mu.$$

Thus $z \in (A+B)_{[\lambda,\mu]}$. Hence $A_{[\lambda,\mu]} + B_{[\lambda,\mu]} \subset (A+B)_{[\lambda,\mu]}$. Therefore $(A+B)_{[\lambda,\mu]} = A_{[\lambda,\mu]} + B_{[\lambda,\mu]}$. This completes the proof.

Lemma 2.14. Let $A, B \in D(I)^R$. and let $[\lambda, \mu] \in D(I)$. Then $(A+B)^*_{[\lambda,\mu]} = A^*_{[\lambda,\mu]} + B^*_{[\lambda,\mu]}$.

Proof. Suppose $(A+B)^*_{[\lambda,\mu]} = \emptyset$. Then clearly $(A+B)^*_{[\lambda,\mu]} \subset A^*_{[\lambda,\mu]} + B^*_{[\lambda,\mu]}$. Suppose $(A+B)^*_{[\lambda,\mu]} \neq \emptyset$ and let $z \in (A+B)^*_{[\lambda,\mu]}$. Then

$$(A+B)^L(z) = \bigvee_{z=x+y} (A^L(x) \wedge B^L(y)) > \lambda$$

and

$$(A+B)^{U}(z) = \bigvee_{z=x+y} (A^{U}(x) \wedge B^{U}(y)) > \mu.$$

Thus there exist $x_0, y_0 \in R$ with $z = x_0 + y_0$ such that $A^L(x_0) \wedge B^L(y_0) > \lambda$ and $A^U(x_0) \wedge B^U(y_0) > \mu$. So $A^L(x_0) > \lambda$, $A^U(x_0) > \mu$ and $B^L(y_0) > \lambda$, $B^U(y_0) > \mu$. Then $x_0 \in A^*_{[\lambda,\mu]}$ and $y_0 \in B^*_{[\lambda,\mu]}$. Thus $z = x_0 + y_0 \in A^*_{[\lambda,\mu]} + B^*_{[\lambda,\mu]}$. So $(A+B)^*_{[\lambda,\mu]} \subset A^*_{[\lambda,\mu]} + B^*_{[\lambda,\mu]}$.

Now for each $[\lambda, \mu] \in D(I_1)$, suppose

$$(\bigvee_{x \in R} A^L(x)) \wedge (\bigvee_{y \in R} B^L(y)) \leq \lambda$$

and

$$(\bigvee_{x \in R} A^U(x)) \wedge (\bigvee_{y \in R} B^U(y)) \leq \mu.$$

Then one of $A_{[\lambda,\mu]}^*$ and $B_{[\lambda,\mu]}^*$ is \emptyset . Thus $A_{[\lambda,\mu]}^* + B_{[\lambda,\mu]}^* = \emptyset \subset (A+B)_{[\lambda,\mu]}^*$. Otherwise, $A_{[\lambda,\mu]}^* \neq \emptyset$ and $B_{[\lambda,\mu]}^* \neq \emptyset$. Then $A_{[\lambda,\mu]}^* + B_{[\lambda,\mu]}^* \neq \emptyset$. Let $z \in A_{[\lambda,\mu]}^* + B_{[\lambda,\mu]}^*$. Then it exist $x_0 \in A_{[\lambda,\mu]}^*$ and $y_0 \in B_{[\lambda,\mu]}^*$ such that $z = x_0 + y_0$ and

$$(A+B)^{L}(z) = \bigvee_{z=x+y} (A^{L}(x) \wedge B^{L}(y)) \ge A^{L}(x_0) \wedge B^{L}(y_0) > \lambda$$

and

$$(A+B)^{U}(z) = \bigvee_{z=x+y} (A^{U}(x) \wedge B^{U}(y)) \ge A^{U}(x_0) \wedge B^{U}(y_0) > \mu.$$

Thus
$$z \in (A+B)^*_{[\lambda,\mu]}$$
. So $A^*_{[\lambda,\mu]} + B^*_{[\lambda,\mu]} \subset (A+B)^*_{[\lambda,\mu]}$. Hence $(A+B)^*_{[\lambda,\mu]} = A^*_{[\lambda,\mu]} + B^*_{[\lambda,\mu]}$. This completes the proof.

Theorem 2.15. Let $A \in D(I)^R$. Then $A \in IVI(R)$ [resp. IVLI(R) and IVRI(R)] if and only if $A_{[\lambda,\mu]}^* = \emptyset$ or $A_{[\lambda,\mu]}^* \in I(R)$ [resp. LI(R) and RI(R)] for each $[\lambda,\mu] \in D(I)$, where I(R)[resp. LI(R) and RI(R)] denotes the set of all ideals[resp. left ideals and right ideals] of R.

Proof. We prove this lemma for left ideal, since other cases are similar. It is clear that $A = \mathbf{0}$ if and only if $A_{[\lambda,\mu]}^* = \emptyset$ for each $[\lambda,\mu] \in D(I)$. Now we assume that $A \neq \mathbf{0}$.

(⇒): Suppose $A \in IVLI(R)$ and let $[\lambda, \mu] \in D(I)$. Let $x, y \in A^*_{[\lambda, \mu]}$ and let $z \in R$. Then

$$\begin{array}{cccc} A^L(x-y) & \geq & A^L(x) \wedge A^L(y) \text{ (Since } A \in \mathrm{IVLI}(\mathbf{R})) \\ & > & \lambda \text{ (Since } x,y \in A^*_{[\lambda,\mu]}) \end{array}$$

and

$$A^L(x-y) \ge A^L(x) \wedge A^L(y) > \mu.$$

Also,

$$\begin{array}{lcl} A^L(zx) & \geq & A^L(x) \text{ (Since } A \in \mathrm{IVLI}(\mathbf{R})) \\ & > & \lambda \text{ (Since } x \in A^*_{[\lambda,\mu]}) \end{array}$$

and

$$A^U(zx) \ge A^U(x) > \mu.$$

Thus $x - y \in A^*_{[\lambda,\mu]}$ and $zx \in A^*_{[\lambda,\mu]}$. Hence $A^*_{[\lambda,\mu]} \in LI(R)$.

 (\Leftarrow) : Suppose the necessary condition holds. For any $x,y\in R$, let $A(x)=[\lambda,\mu]$ and let A(y)=[s,t] such that $\lambda\leq s$ and $\mu\leq t$.

Case (i): Suppose $[\lambda, \mu] = [0, 0]$. Then

$$A^L(x-y) \geq \lambda = A^L(x) \wedge A^L(y), A^U(x-y) \geq \mu = A^U(x) \wedge A^U(y)$$

and

$$A^{L}(zx) > \lambda = A^{L}(x)$$
 and $A^{U}(zx) > \mu = A^{U}(x)$, for each $z \in R$.

Thus $A \in IVLI(R)$.

Case (ii): Suppose $[\lambda, \mu] \neq [0, 0]$. For each $\epsilon > 0$, let $\epsilon < \lambda$. Then we have

$$A^{L}(y) > s - \epsilon \ge \lambda - \epsilon, \ A^{U}(y) > t - \epsilon \ge \mu - \epsilon.$$

and

$$A^{L}(x) > \lambda - \epsilon, \ A^{U}(x) > \mu - \epsilon.$$

Thus $x,y\in A^*_{[\lambda-\epsilon,\mu-\epsilon]}$. By the hypothesis, $A^*_{[\lambda-\epsilon,\mu-\epsilon]}\in I(R)$. So $x-y\in A^*_{[\lambda-\epsilon,\mu-\epsilon]}$ and $zx\in A^*_{[\lambda-\epsilon,\mu-\epsilon]}$ for each $z\in R$. Then $A^L(x-y)>\lambda-\epsilon$, $A^U(x-y)>\mu-\epsilon$ and $A^L(zx)>\lambda-\epsilon$, $A^U(zx)>\mu-\epsilon$ for each $z\in R$. Since ϵ is an arbitrary, $A^L(x-y)\geq \lambda=A^L(x)\wedge A^L(y)$, $A^U(x-y)\geq \mu=A^U(x)\wedge A^U(y)$ and $A^L(zx)\geq \lambda=A^L(x)$, $A^U(zx)\geq \mu=A^U(x)$. Hence $A\in IVLI(R)$. This completes the proof.

Proposition 2.16. IVLI_[\lambda_0,\mu_0](R), IVRI_[\lambda_0,\mu_0](R) and IVI_[\lambda_0,\mu_0](R) are sublattices of IVR(R) and for any $A, B \in \text{IVLI}_{[\lambda_0,\mu_0]}(R)$ [resp. IVRI_[\lambda_0,\mu_0](R) and IVI_[\lambda_0,\mu_0](R)], $A \lor B = A + B$.

Proof. It is easy to see that $IVLI_{[\lambda_0,\mu_0]}(R)$, $IVRI_{[\lambda_0,\mu_0]}(R)$ and $IVI_{[\lambda_0,\mu_0]}(R)$ are sublattices of IVR(R). We do only prove that $A \vee B = A + B$ for any $A, B \in IVLI_{[\lambda_0,\mu_0]}(R)$ (For $IVRI_{[\lambda_0,\mu_0]}(R)$ and $IVI_{[\lambda_0,\mu_0]}(R)$, the proofs are similar). Let $z \in R$. Then

$$(A+B)^{L}(z) = \bigvee_{z=x+y} (A^{L}(x) \wedge B^{L}(y)) \le A^{L}(0) \wedge B^{L}(0) = \lambda_{0}$$

and

$$(A+B)^{U}(z) = \bigvee_{z=x+y} (A^{U}(x) \wedge B^{U}(y)) \le A^{U}(0) \wedge B^{U}(0) = \mu_0.$$

Thus $\bigvee_{z=x+y}(A+B)^L(z) \leq \lambda_0$ and $\bigvee_{z=x+y}(A+B)^U(z) \leq \mu_0$. On the other hand, $\bigvee_{z\in R}(A+B)^L(z) \geq (A+B)^L(0) = \bigvee_{0=x+y}(A^L(x) \wedge B^L(y)) \geq A^L(0) \wedge B^L(0) = \lambda_0$. By the similar arguments, we have that $\bigvee_{z\in R}(A+B)^U(z) \geq \mu_0$. So

$$\left[\bigvee_{z\in R} (A+B)^{L}(z), \bigvee_{z\in R} (A+B)^{U}(z)\right] = (A+B)(0) = [\lambda_0, \mu_0]. \tag{2.3}$$

For each $[\lambda_0, \mu_0] \in D(I_1)$ with $\lambda < \lambda_0$ and $\mu < \mu_0, (A+B)^*_{[\lambda,\mu]} \neq \emptyset$. By Lemma 2.14, $(A+B)^*_{[\lambda,\mu]} = A^*_{[\lambda,\mu]} + B^*_{[\lambda,\mu]}$. Since $A, B \in IVLI(R)$, by Theorem 2.15, $A^*_{[\lambda,\mu]}, B^*_{[\lambda,\mu]} \in LI(R)$. Thus $(A+B)^*_{[\lambda,\mu]} \in LI(R)$. So, by Theorem 2.15, $A+B \in IVLI(R)$. Moreover,

$$A + B \in \text{IVLI}_{[\lambda_0, \mu_0]}(R).$$
 (2.4)

Let $z \in R$. Then

$$(A+B)^L(z) = \bigvee_{z=x+y} (A^L(x) \wedge B^L(y)) \ge A^L(z) \wedge B^L(0) = A^L(z)$$

and

$$(A+B)^{U}(z) = \bigvee_{z=x+y} (A^{U}(x) \wedge B^{U}(y)) \ge A^{U}(z) \wedge B^{U}(0) = B^{U}(z).$$

Thus $A \subset A + B$. By the similar arguments, we have $B \subset A + B$. So

$$A \subset A + B \text{ and } B \subset A + B.$$
 (2.5)

Now let $C \in \text{IVLI}(\mathbf{R})$ such that $A \subset C$ and $B \subset C$ and let $z \in R$. Then

$$\begin{split} (A+B)^L(z) &= \bigvee_{z=x+y} (A^L(x) \wedge B^L(y)) \leq \bigvee_{z=x+y} (C^L(x) \wedge C^L(y)) \\ &\leq \bigvee_{z=x+y} C^L(z) \text{ (Since } C^L(z) = C^L(x+y) \geq C^L(x) \wedge C^L(y)) \\ &= C^L(z). \end{split}$$

Similarly, we have that $(A+B)^U(z) \geq C^U(z)$. Thus

$$A + B \subset C. \tag{2.6}$$

Hence, by (2.3),(2.4), (2.5) and (2.6), $A+B=A\vee B$. This completes the proof. \Box

Remark 2.16. (a) $A \vee B = A + B$ is not true in IVR(R), IVLI(R), IVRI(R) and IVI(R) (See Example 2.17).

(b) As well-known, S+T is not subring in general, where S and T are subrings of R. Hence $A \vee B = A+B$ is not true in $IVR_{[\lambda_0,\mu_0]}(R)$ (See Example 2. 18).

Example 2.17. We define two mappings $A: R \to D(I)$ and $B: R \to D(I)$ as follows, respectively: For each $x \in R$,

$$A(x) = [0.4, 0.5]$$
 and $B(x) = [0.3, 0.6]$.

Then clearly $A, B \in IVR(R)[resp. IVLI(R), IVRI(R)]$ and IVI(R)]. Moreover, it is easy to see that (A + B)(0) = [0.3, 0.6] and $(A \vee B)(0) = [0.4, 0.5]$.

Example 2.18. Let $R = \{(a, b) : a, b \in \mathbb{Z}\}$, where \mathbb{Z} is the ring of integers. We define the additive operation and the multiplicative operation on R as follows, respectively: For any $(a, b), (c, d) \in R$,

$$(a,b) + (c,d) = (a+c,b+d)$$
 and $(a,b) \cdot (c,d) = (0,0)$.

Then $(R, +, \cdot)$ forms a ring with zero (0,0). Now we define three mappings $A, B, C: R \to D(I)$ as follows, respectively: For each $(x, y) \in R$,

$$A(x,y) = \begin{cases} \left[\frac{1}{3}, \frac{3}{5}\right], & \text{if } y = 0; \\ [0,0], & \text{if } y \neq 0. \end{cases}$$

$$B(x,y) = \begin{cases} \left[\frac{1}{3}, \frac{3}{5}\right], & \text{if } x = 0; \\ [0,0], & \text{if } x \neq 0. \end{cases}$$

$$C(x,y) = \begin{cases} \left[\frac{1}{3}, \frac{3}{5}\right], & \text{if } x = y; \\ [0,0], & \text{if } x \neq y. \end{cases}$$

Then it is easy to see that $A, B, C \in IVI(R)$. Let $(x, y) \in R$. Then

$$(A+B)^{L}(x,y) = \bigvee_{(x,y)=(x_{1},y_{1})+(x_{2},y_{2})} (A^{L}(x_{1},y_{1}) \wedge B^{L}(x_{2},y_{2}))$$

$$\leq A^{L}(x,0) \wedge B^{L}(0,y) = \frac{1}{3}$$

and

$$(A+B)^{U}(x,y) = \bigvee_{(x,y)=(x_1,y_1)+(x_2,y_2)} (A^{U}(x_1,y_1) \wedge B^{U}(x_2,y_2))$$

$$\leq A^{U}(x,0) \wedge B^{U}(0,y) = \frac{3}{5}.$$

Thus $(C \wedge (A+B))^L(x,y) = C^L(x,y) \wedge (A+B)^L(x,y) = C^L(x,y)$ and $(C \wedge (A+B))^U(x,y) = C^U(x,y) \wedge (A+B)^U(x,y) = C^U(x,y)$. So $C \wedge (A+B) = C$. On the other hand,

$$(C \wedge A)^{L}(x,y) = C^{L}(x,y) \wedge A^{L}(x,y) = \begin{cases} \frac{1}{3}, & \text{if } (x,y) = (0,0); \\ 0, & \text{if } (x,y) \neq (0,0). \end{cases}$$

and

$$(C \wedge A)^U(x,y) = C^U(x,y) \wedge A^U(x,y) = \left\{ \begin{array}{l} \frac{3}{5}, & \text{if } (x,y) = (0,0); \\ 0, & \text{if } (x,y) \neq (0,0). \end{array} \right.$$

Also,

$$(C \wedge B)^L(x,y) = C^L(x,y) \wedge B^L(x,y) = \begin{cases} \frac{1}{3}, & \text{if } (x,y) = (0,0); \\ 0, & \text{if } (x,y) \neq (0,0). \end{cases}$$

and

$$(C \wedge B)^U(x,y) = C^U(x,y) \wedge B^U(x,y) = \begin{cases} \frac{3}{5}, & \text{if } (x,y) = (0,0); \\ 0, & \text{if } (x,y) \neq (0,0). \end{cases}$$

Thus

$$((C \land A) + (C \land B))^{L}(x,y) = \begin{cases} \frac{1}{3}, & \text{if } (x,y) = (0,0); \\ 0, & \text{if } (x,y) \neq (0,0). \end{cases}$$

and

$$((C \land A) + (C \land B))^{U}(x,y) = \begin{cases} \frac{3}{5}, & \text{if } (x,y) = (0,0); \\ 0, & \text{if } (x,y) \neq (0,0). \end{cases}$$

So $C \wedge (A+B) \neq (C \wedge A) + (C \wedge B)$. Hence IVI(R) is not distributive. \square

Lemma 2.19. Let $A, B \in IVI(R)$. If A and B have the sup-property, then the following holds:

- (a) A + B has the sup-property.
- (b) $A \cap B$ has the sup-property.

Proof. (a) Let S be any subset of R. Then

$$\bigvee_{z \in S} (A+B)^L(z) = \bigvee_{z \in S} (\bigvee_{z=x+y} (A^L(x) \wedge B^L(y)))$$
$$= \bigvee_{z \in S, z=x+y} (A^L(x) \wedge B^L(y))$$

Similarly, we have that

$$\bigvee_{z \in S} (A+B)^U(z) = \bigvee_{z \in S} (\bigvee_{z=x+y} (A^U(x) \wedge B^U(y)))$$
$$= \bigvee_{z \in S, z=x+y} (A^U(x) \wedge B^U(y)).$$

Let us define two subsets X(S) and Y(S) of R by

 $X(S)=\{x\in R:z\in S,z=x+y\text{ for some }y\in R\text{ such that }A^L(x)\leq B^L(y)\text{ and }A^U(x)\leq B^U(y)\},$

 $Y(S)=\{y\in R:z\in S,z=x+y\text{ for some }x\in R\text{ such that }A^L(x)\geq B^L(y)\text{ and }A^U(x)\geq B^U(y)\}.$

Since A and B have the sup-property, there exist $x' \in X(S)$ and $y'' \in Y(S)$ such that

$$A^{L}(x') = \bigvee_{x \in X(S)} (A^{L}(x), A^{U}(x')) = \bigvee_{x \in X(S)} A^{U}(x)$$

and (2.7)

$$B^L(y'') = \bigvee_{y \in Y(S)} (B^L(y), B^U(y'')) = \bigvee_{y \in Y(S)} B^U(y).$$

Since $x' \in X(S)$, there exists $z_1 \in S$ such that $z_1 = x' + y'$ for some $y' \in R$ satisfying $A^L(x') \leq B^L(y')$ and $A^U(x') \leq B^U(y')$. Also, since $y'' \in Y(S)$, there exists $z_2 \in S$ such that $z_2 = x'' + y''$ for some $x'' \in R$ satisfying $A^L(x'') \geq B^L(y'')$ and $A^U(x'') \geq B^U(y'')$.

On the other hand, we have either $A^L(x^{'}) \geq B^L(y^{''}), \ A^U(x^{'}) \geq B^U(y^{''})$ or $A^L(x^{'}) \leq B^L(y^{''}), \ A^U(x^{'}) \leq B^U(y^{''}).$

Case (i): Suppose
$$A^L(x') \geq B^L(y'')$$
 and $A^U(x') \geq B^U(y'')$. Then
$$\bigvee_{z \in S, z = x + y} (A^L(x) \wedge B^L(y)) = \bigvee_{x \in X(S)} (A^L(x) \wedge B^L(y)) \vee (\bigvee_{y \in Y(S)} (A^L(x) \wedge B^L(y)))$$
(As in Lemma 2.13)
$$= (\bigvee_{x \in X(S)} A^L(x)) \vee (\bigvee_{y \in Y(S)} B^L(y))$$

$$= A^L(x') \vee B^L(y'') \text{ (By (2.7))}$$

$$= A^L(x') \cdot \text{ (By the hypothesis)}$$

Similarly, we have that $\bigvee_{z \in S, z = x + y} (A^U(x) \wedge B^U(y)) = A^U(x')$. Thus

$$\bigvee_{z \in S} (A+B)^{L}(z) = A^{L}(x')$$

and

$$\bigvee_{z \in S} (A+B)^{U}(z) = A^{U}(x').$$
(2.8)

Now we show that

$$\bigvee_{z \in S} (A+B)^{L}(z) = (A+B)^{L}(z_{1}) \text{ and } \bigvee_{z \in S} (A+B)^{U}(z) = (A+B)^{U}(z_{1}).$$

For decompositions $z_1 = x_i' + y_i'$, we have

$$(A+B)^{L}(z_{1}) = \bigvee_{z_{1}=x'_{i}+y'_{i}} (A^{L}(x'_{i}) \wedge B^{L}(y'_{i}))$$

and

$$(A+B)^{U}(z_{1}) = \bigvee_{z_{1}=x'_{i}+y'_{i}} (A^{U}(x'_{i}) \wedge B^{U}(y'_{i})).$$

Again, we construct subset $X(z_1)$ and $Y(z_1)$ of R as follows: $X(z_1) = \{x_i' \in R : z_1 = x_i' + y_i' \text{ for some } y_i' \in R \text{ such that } A^L(x_i') \leq B^L(y_i') \text{ and } A^U(x_i') \leq B^U(y_i')\},$

 $A^{U}(x_{i}^{'}) \leq B^{U}(y_{i}^{'})\},$ $Y(z_{1}) = \{y_{i}^{'} \in R : z_{1} = x_{i}^{'} + y_{i}^{'} \text{ for some } x_{i}^{'} \in R \text{ such that } A^{L}(x_{i}^{'}) \geq B^{L}(y_{i}^{'}) \text{ and } A^{U}(x_{i}^{'}) \geq B^{U}(y_{i}^{'})\}. \text{ Then}$

$$\begin{array}{lll} \bigvee_{z_1=x_i^{'}+y_i^{'}} (A^L(x_i^{'}) \wedge B^L(y_i^{'})) & = & (\bigvee_{x_i^{'} \in X(z_1)} (A^L(x_i^{'}) \wedge B^L(y_i^{'}))) \vee (\bigvee_{x_i^{'} \in X(z_1)} (A^L(x_i^{'}) \wedge B^L(y_i^{'}))) \\ & & B^L(y_i^{'}))) \text{ (As in Lemma 2.13)} \\ & = & (\bigvee_{x_i^{'} \in X(z_1)} (A^L(x_i^{'}))) \vee (\bigvee_{y_i^{'} \in Y(z_1)} (B^L(y_i^{'}))). \end{array}$$

By the similar arguments, we have that

$$\bigvee_{z_1=x_i'+y_i'} (A^U(x_i') \wedge B^U(y_i')) = (\bigvee_{x_i' \in X(z_1)} (A^U(x_i'))) \vee (\bigvee_{y_i' \in Y(z_1)} (B^U(y_i'))).$$

Since $X(z_1) \subset X(S)$ and $x'_i \in X(z_1)$,

$$A^{L}(x') \leq \bigvee_{x_{i}' \in X(z_{1})} A^{L}(x_{i}') \leq \bigvee_{x \in X(S)} A^{L}(x) = A^{L}(x_{i}')$$

and

$$A^{U}(x') \ge \bigvee_{x'_{i} \in X(z_{1})} A^{U}(x'_{i}) \ge \bigvee_{x \in X(S)} A^{U}(x) = A^{U}(x'_{i}).$$

Thus
$$\bigvee_{x_i' \in X(z_1)} A^L(x_i') = A^L(x_i')$$
 and $\bigvee_{x_i' \in X(z_1)} A^U(x_i') = A^U(x_i')$. Also,

since $Y(z_1) \subset Y(S)$ and $y'' \in Y(z_1)$, we have

$$\bigvee_{y_i' \in Y(z_1)} B^L(y_i') = B^L(y_i'') \text{ and } \bigvee_{y_i' \in Y(z_1)} B^U(y_i') = B^U(x_i'').$$

By the hypothesis,

$$\bigvee_{x_{i}^{'} \in X(z_{1})} A^{L}(x_{i}^{'}) = A^{L}(x_{i}^{'}) \geq B^{L}(y_{i}^{''}) = \bigvee_{y_{i}^{'} \in Y(z_{1})} B^{L}(y_{i}^{'})$$

and

$$\bigvee_{x_i' \in X(z_1)} A^U(x_i') = A^U(x_i') \ge B^U(y_i'') = \bigvee_{y_i' \in Y(z_1)} B^U(y_i').$$

Thus

$$(A+B)^{L} = (\bigvee_{x_{i}^{'} \in X(z_{1})} A^{L}(x_{i}^{'})) \vee (\bigvee_{y_{i}^{'} \in Y(z_{1})} B^{L}(y_{i}^{'})) = A^{L}(x^{'})$$

and (2.9)

$$(A+B)^{U} = (\bigvee_{x_{i}' \in X(z_{1})} A^{U}(x_{i}')) \lor (\bigvee_{y_{i}' \in Y(z_{1})} B^{U}(y_{i}')) = A^{U}(x').$$

So, by (2.8) and (2.9),

$$\bigvee_{z \in S} (A+B)^{L}(z) = (A+B)^{L}(z_{1}) \text{ and } \bigvee_{z \in S} (A+B)^{U}(z) = (A+B)^{U}(z_{1}).$$

Case (ii): Suppose $A^L(x') \leq B^L(y'')$ and $A^U(x') \leq B^U(y'')$. By proceeding in a similar way as in Case (i), we can verify that

$$\bigvee_{z \in S} (A+B)^{L}(z) = (A+B)^{L}(z_{2}) \text{ and } \bigvee_{z \in S} (A+B)^{U}(z) = (A+B)^{U}(z_{2})$$

for some $z_2 \in S$. Hence, in all, A + B has the sup-property.

(b) The proof is left as an exercise for the reader. This completes the proof. $\hfill\Box$

Proposition 2.20. Let $IVIs_{[\lambda_0,\mu_0]}(R)$ be the set of all IVIs with the sup-property and same tip " $[\lambda_0,\mu_0]$ ". Then $IVIs_{[\lambda_0,\mu_0]}(R)$ forms a sublattice of $IVI_{[\lambda_0,\mu_0]}(R)$ and hence of IVI(R).

Proof. Let $A, B \in \text{IVIs}_{[\lambda_0,\mu_0]}(R)$. We show that $A \vee B = A + B$. Since $A, B \in \text{IVI}(R)$, by Lemma 2.13, $A_{[\lambda,\mu]}$ and $B_{[\lambda,\mu]}$ are ideals for each $[\lambda,\mu] \in D(I)$ with $\lambda \leq (A+B)^L(0) = \lambda_0 \ \mu \leq (A+B)^U(0) = \mu_0$. Then $A_{[\lambda,\mu]} + B_{[\lambda,\mu]}$ is an ideal of R. Since A and B have the sup-property, by Lemma 2.13, $A_{[\lambda,\mu]} + B_{[\lambda,\mu]} = (A+B)_{[\lambda,\mu]}$. Thus $(A+B)_{[\lambda,\mu]}$ is an ideal of R. So, by Theorem 2.12, $A+B \in \text{IVI}(R)$. Since A and B have the same tip " $[\lambda_0,\mu_0]$ ", we have

$$(A+B)^{L}(z) = (\bigvee_{z=x+y} A^{L}(x) \wedge B^{L}(y) \ge A^{L}(z) \wedge B^{L}(0) = A^{L}(z)$$

and

$$(A+B)^{U}(z) = (\bigvee_{z=x+y} A^{U}(x) \wedge B^{U}(y) \ge A^{U}(z) \wedge B^{U}(0) = A^{U}(z)$$

for each $z \in S$. Then $A \subset A + B$. By the similar arguments, we have $B \subset A + B$.

Now let $C \in IVI(R)$ contain A and B and let $z \in S$ such that z = x + y. Then

$$C^L(z) = C^L(x+y) \ge C^L(x) \wedge C^L(y) \text{ and } C^U(z) = C^U(x+y) \ge C^U(x) \wedge C^U(y).$$
 Thus

$$\begin{array}{ll} (A+B)^L(z) & = & \bigvee_{z=x+y} (A^L(x) \wedge B^L(y)) \\ \\ \leq & \bigvee_{z=x+y} (C^L(x) \wedge C^L(y)) \text{ (Since } A \subset C \text{ and } B \subset C) \\ \\ = & C^L(z). \end{array}$$

Similarly, we have that $(A+B)^U(z) \leq C^U(z)$. So $A+B \subset C$. Hence A+B is the least interval-valued fuzzy ideal containing A and B. Therefore $A+B=A\vee B$. On the other hand, by Lemma 2.19(a), $A\vee B$ has the sup-property. Thus $A\vee B\in \mathrm{IVIs}_{[\lambda_0,\mu_0]}(R)$. So $\mathrm{IVIs}_{[\lambda_0,\mu_0]}(R)$ forms a sublattice of $\mathrm{IVI}_{[\lambda_0,\mu_0]}(R)$ and hence of $\mathrm{IVI}(R)$. This completes the proof.

The following lattice diagram is the interrelationship of different sublattices of the lattice IVR(R):

Figure 1

Now we obtain an interval-valued fuzzy analog of a well-known result that the set of ideals of a ring forms a modular lattice.

3. Interval-valued fuzzy ideals and modularity

In the previous section, we discussed various sublattices of the lattice of interval-valued fuzzy ideals of a ring. Hence, we obtain an interval-valued fuzzy analog of a well known result that the set of ideals of a ring forms a modular lattice.

Lemma 3.1. Let $A \in IVR(R)$. If $A^L(x) < A^L(y)$ and $A^U(x) < A^U(y)$ for some $x, y \in R$, then A(x + y) = A(x).

Proof. Since $A \in IVR(R)$,

$$A^L(x+y) \ge A^L(x) \wedge A^L(y) = A^L(x)$$

and

$$A^{U}(x+y) \ge A^{U}(x) \wedge A^{U}(y) = A^{U}(x).$$

Assume that $A^{L}(x+y) > A^{L}(x)$ and $A^{U}(x+y) > A^{U}(x)$. Then

$$A^L(x) = A^L(y+x-y) \geq A^L(x+y) \wedge A^L(y) > A^L(x)$$

and

$$A^{U}(x) = A^{U}(y + x - y) \ge A^{U}(x + y) \wedge A^{U}(y) > A^{U}(x).$$

This contradicts the fact that A(x) = A(x). Hence A(x+y) = A(x). \square

Proposition 3.2. The sublattice $IVIs_{[\lambda_0,\mu_0]}(R)$ is modular.

Proof. Since the modular inequality is valid for every lattice, for any $A, B, C \in IVIs_{[\lambda_0, \mu_0]}(R)$ with $B \subset A$, we have that $B \vee (A \wedge C) \subset A \wedge (B \vee C)$.

Assume that $A \wedge (B \vee C) \neq B \vee (A \wedge C)$. Then there exists $z \in R$ such that

$$(A \wedge (B \vee C))^L(z) > (B \vee (A \wedge C))^L(z)$$

and

$$(A \wedge (B \vee C))^U(z) > (B \vee (A \wedge C))^U(z).$$

Thus, by Proposition 2.20,

$$A^L(z) \wedge (B+C)^L(z) > (B+(A\cap C))^L(z)$$

and

$$A^{U}(z) \wedge (B+C)^{U}(z) > (B+(A\cap C))^{U}(z).$$

So

$$A^L(z) > (B + (A \cap C))^L(z), A^U(z) > (B + (A \cap C))^U(z)$$

and (3.1)

$$(B+C)^L(z) > (B+(A\cap C))^L(z), (B+C)^U(z) > (B+(A\cap C))^U(z).$$

Then there exist $x_0, y_0 \in R$ with $z = x_0 + y_0$ such that

$$B^{L}(x_{0}) \wedge C^{L}(y_{0}) > (B + (A \cap C)^{L}(z))$$

and

$$B^{U}(x_0) \wedge C^{U}(y_0) > (B + (A \cap C)^{U}(z).$$

Thus

$$B^{L}(x_{0}) > (B + (A \cap C))^{L}(z), B^{U}(x_{0}) > (B + (A \cap C))^{U}(z)$$
 (3.2)

and

$$C^{L}(y_0) > (B + (A \cap C))^{L}(z), C^{U}(y_0) > (B + (A \cap C))^{U}(z).$$
 (3.3)

On the other hand,

$$(B + (A \cap C))^{L}(z) = \bigvee_{z=x+y} (B^{L}(x) \wedge (A \cap C)^{L}(y)))$$

$$\geq (B^{L}(x_{0}) \wedge (A \cap C)^{L}(y_{0}))$$

$$= B^{L}(x_{0}) \wedge A^{L}(y_{0}) \wedge C^{L}(y_{0}).$$

Similarly, we have that $(B + (A \cap C))^U(z) \ge B^U(x_0) \wedge A^U(y_0) \wedge C^U(y_0)$. Then, by (3.1),(3.2),(3.3),

$$A^{L}(z), B^{L}(x_0), C^{L}(y_0) > B^{L}(x_0) \wedge A^{L}(y_0) \wedge C^{L}(y_0)$$

and

$$A^{U}(z), B^{U}(x_0), C^{U}(y_0) > B^{U}(x_0) \wedge A^{U}(y_0) \wedge C^{U}(y_0).$$

Thus

$$B^{L}(x_0) \wedge A^{L}(y_0) \wedge C^{L}(y_0) = A^{L}(y_0)$$

and

$$B^{U}(x_0) \wedge A^{U}(y_0) \wedge C^{U}(y_0) = A^{U}(y_0).$$

So

$$A^{L}(-y_0) = A^{L}(y_0) < A^{L}(x_0 + y_0) = A^{L}(z)$$

and

$$A^{U}(-y_0) = A^{U}(y_0) < A^{U}(x_0 + y_0) = A^{U}(z).$$

By Lemma 3.1,

$$A^{L}(y_0) = A^{L}(x_0 + y_0 - y_0) = A^{L}(x_0)$$

and

$$A^{U}(y_0) = A^{U}(x_0 + y_0 - y_0) = A^{U}(x_0).$$

Then

$$B^{L}(x_0) > A^{L}(y_0) = A^{L}(x_0)$$

and

$$B^{U}(x_0) > A^{U}(y_0) = A^{U}(x_0).$$

This contradicts the fact that $B \subset A$. Hence $A \wedge (B \vee C) = B \vee (A \wedge C)$. Therefore $\mathrm{IVIs}_{[\lambda_0,\mu_0]}(R)$ is modular. This completes the proof.

Remark 3.3. As a special case, $IVI_{[1,1]}(R)$ is a complete sublattice of IVI(R) and $IVIs_{[1,1]}(R)$ is a modular sublattice of IVI(R).

Proposition 3.4.(The generalization of Proposition 3.2) $IVLI_{[\lambda_0,\mu_0]}(R)$, $IVRI_{[\lambda_0,\mu_0]}(R)$ and $IVI_{[\lambda_0,\mu_0]}(R)$ are all modular.

Proof. The proofs are similar to Proposition 3.2. \Box

Proposition 3.5. IVI(R) is bounded.

Proof. It is clear that $\mathbf{0} \in \text{IVI}(R)$ and $\mathbf{1} \in \text{IVI}(R)$. Moreover, $\mathbf{0} \subset A \subset \mathbf{1}$ for each $A \in \text{IVI}(R)$. Hence IVI(R) is bounded.

Proposition 3.6. (a) IVI(R) is not complemented.

- (b) IVI(R) has no atoms.
- (c) IVI(R) has no dual atoms.

Proof. (a) We define a mapping $A: R \to D(I)$ as follows: For each $x \in R, A(x) = [\frac{1}{2}, \frac{1}{2}]$. Then clearly $[A, A^c] \in \text{IVI}(R)$. But $A \cup A^c \neq \tilde{1}$ and $A \cap A^c \neq \tilde{0}$. Thus A has no complement in IVI(R). Hence IVI(R) is not complemented.

- (b) Suppose $A \in \text{IVI}(\mathbf{R})$ with $A \neq \tilde{0}$. We define a mapping $B: R \to D(I)$ as follows: For each $x \in R, B^L(x) = \frac{1}{2}A^L(x)$ and $B^U(x) = \frac{1}{2}A^U(x)$. Then clearly $B \in \text{IVI}(\mathbf{R})$. Moreover, $\tilde{0} \subsetneq B \subsetneq A$. Hence IVI(R) has no atoms
- (c) Suppose $A \in IVI(R)$ with $A \neq \tilde{1}$. We define a mapping $B : R \to D(I)$ as follows: For each $x \in R$,

$$B^{L}(x) = \frac{1}{2} + \frac{1}{2}A^{L}(x)$$
 and $B^{U}(x) = \frac{1}{2} + \frac{1}{2}A^{U}(x)$.

Then clearly $A \subsetneq B \subsetneq \tilde{1}$.

Now let $x, y \in R$. Then

$$B^{L}(xy) = \frac{1}{2} + \frac{1}{2}A^{L}(xy)$$

$$\geq \frac{1}{2} + \frac{1}{2}(A^{L}(x) \vee A^{L}(y) \text{ (Since } A \in IVI(R))$$

$$= (\frac{1}{2} + \frac{1}{2}A^{L}(x)) \vee (\frac{1}{2} + \frac{1}{2}A^{L}(y)).$$

$$= B^{L}(x) \vee B^{L}(y).$$

By the similar arguments, we have that $B^U(xy) \geq B^U(x) \vee B^U(y)$. Also,

$$B^{L}(x - y) = \frac{1}{2} + \frac{1}{2}A^{L}(x - y)$$

$$\geq \frac{1}{2} + \frac{1}{2}(A^{L}(x) \wedge A^{L}(y) \text{ (Since } A \in IVI(R))$$

$$= (\frac{1}{2} + \frac{1}{2}A^{L}(x)) \wedge (\frac{1}{2} + \frac{1}{2}A^{L}(y)).$$

$$= B^{L}(x) \wedge B^{L}(y).$$

By the similar arguments, we have that $B^U(x-y) \geq B^U(x) \wedge B^U(y)$. So $B \in \text{IVI}(\mathbb{R})$. Hence IVI(R) has no dual atoms.

References

- [1] G.Birkoff, Lattice Theory, A.M.S. Colliquium Publication Vol.XXV(1967).
- [2] R.Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy set and systems 63(1995) 87-90.
- [3] M.Cheong and K.Hur, Interval-valued fuzzy ideals and bi-ideals of a semigroup, Honam Math.J.33(4)(2011).
- [4] J.Y.Choi, S.R.Kim and K.Hur, Interval-valued smooth topological spaces, Honam Math.J.32(4)(2010), 711-738.
- [5] H.W.Kang and K.Hur, Interval-valued fuzzy subgroups and rings, Honam. Math. J. 32.(4)(2010), 593-617
- [6] T.K.Mondal and S.K.Samanta, Topology of interval-valued fuzzy sets, Indian J.Pure Appl.Math.30(1)(1999)20-38
- [7] L.A.Zadeh, Fuzzy sets, Inform and Control 8, 338-353, 1965.
- [8] L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci 8(1975) 199-249

Keon Chang Lee

Department of Computer Science, Dongshin University,

Naju 520-714, Korea. E-mail: kclee@dsu.ac.kr

Kul Hur

Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan 570-749, Korea.

E-mail: kulhur@wonkwang.ac.kr

Pyung Ki Lim

Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan 570-749, Korea.

E-mail: pklim@wonkwang.ac.kr