THE LATTICE OF INTERVAL-VALUED FUZZY IDEALS OF A RING

Keon Chang Lee, Kul Hur and Pyung Ki Lim*

Abstract

We investigate the lattice structure of various sublattices of the lattice of interval-valued fuzzy subrings of a given ring. We prove that a special class of interval-valued fuzzy ideals of a ring. Finally, we show that the lattice of interval-valued fuzzy ideals of R is not complemented[resp. has no atoms(dual atoms)].

1. Introduction and Preliminaries

The concept of a fuzzy set was introduced by Zadeh[7], and then he introduced the notion of interval-valued fuzzy sets as a generalization of fuzzy sets in 1975[8]. After that time, Biswas[2] applied it to group theory, and Montal and Samanta[6] to topology. Recently, Cheong and Hur[3] investigated interval-valued ideals and bi-ideals of a subgroup, Kang and Hur[5] applied the concept of interval-valued fuzzy sets to algebra. Moreover, Choi et.al[4] introduced the notion of interval-valued smooth topological spaces and studied some of it's properties.

In this paper, we investigate the lattice of various sublattices of the lattice of interval-valued fuzzy subgroups of a given ring. We prove that a special class of interval-valued fuzzy ideals forms a modular sublattice of the lattice of interval-valued fuzzy ideals of a ring. Finally, we show that the lattice of interval-valued fuzzy ideals of R is not complemented[resp. has no atoms(dual atoms)].

Now, we will list some basic concepts and two results which are needed in the later sections.

[^0]Let $D(I)$ be the set of all closed subintervals of the unit interval $I=[0,1]$. The elements of $D(I)$ are generally denoted by capital letters M, N, \cdots, and note that $M=\left[M^{L}, M^{U}\right]$, where M^{L} and M^{U} are the lower and the upper end points respectively. Especially, we denoted, $\mathbf{0}$ $=[0,0], \mathbf{1}=[1,1]$, and $\boldsymbol{a}=[a, a]$ for every $a \in(0,1)$. We also note that
(i) $(\forall M, N \in D(I))\left(M=N \Leftrightarrow M^{L}=N^{L}, M^{U}=N^{U}\right)$,
(ii) $(\forall M, N \in D(I))\left(M \leq N \Leftrightarrow M^{L} \leq N^{L}, M^{U} \leq N^{U}\right)$.

For every $M \in D(I)$, the complement of M, denoted by M^{c}, is defined by $M^{c}=1-M=\left[1-M^{U}, 1-M^{L}\right]$ (See $[6]$).

Definition $1.1[6,8]$. A mapping $A: X \rightarrow D(I)$ is called an intervalvalued fuzzy set (in short, IVS) in X and is denoted by $A=\left[A^{L}, A^{U}\right]$.

Thus for each $x \in X, A(x)=\left[A^{L}(x), A^{U}(x)\right]$, where $A^{L}(x)[$ resp. $\left.A^{U}(x)\right]$ is called the lower[resp. upper] end point of x to A. For any $[a, b] \in D(I)$, the interval-valued fuzzy set A in X defined by $A(x)=$ $[a, b]$ for each $x \in X$ is denoted by $[\widetilde{a, b}]$ and if $a=b$, then the IVS $[\widetilde{a, b}]$ is denoted by simply \widetilde{a}. In particular, $\tilde{0}$ and $\tilde{1}$ denote the intervalvalued fuzzy empty set and the interval-valued fuzzy whole set in X, respectively.

We will denote the set of all IVSs in X as $D(I)^{X}$. It is clear that $[A, A] \in D(I)^{X}$ for each $A \in I^{X}$.

Definition 1.2 [6]. Let $A, B \in D(I)^{X}$ and let $\left\{A_{\alpha}\right\}_{\alpha \in \Gamma} \subset D(I)^{X}$. Then
(a) $A \subset B$ iff $A^{L} \leq B^{L}$ and $A^{U} \leq B^{U}$.
(b) $A=B$ iff $A \subset B$ and $B \subset A$.
(c) $A^{c}=\left[1-A^{U}, 1-A^{L}\right]$.
(d) $A \cup B=\left[A^{L} \vee B^{L}, A^{U} \vee B^{U}\right]$.
$(\mathrm{d})^{\prime} \bigcup_{\alpha \in \Gamma} A_{\alpha}=\left[\bigvee_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigvee_{\alpha \in \Gamma} A_{\alpha}^{U}\right]$.
(e) $A \cap B=\left[A^{L} \wedge B^{L}, A^{U} \wedge B^{U}\right]$.
$(\mathrm{e})^{\prime} \bigcap_{\alpha \in \Gamma} A_{\alpha}=\left[\bigwedge_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigwedge_{\alpha \in \Gamma} A_{\alpha}^{U}\right]$.
Result 1.A [6, Theorem 1]. Let $A, B, C \in D(I)^{X}$ and let $\left\{A_{\alpha}\right\}_{\alpha \in \Gamma} \subset$ $D(I)^{X}$. Then
(a) $\tilde{0} \subset A \subset \tilde{1}$.
(b) $A \cup B=B \cup A, A \cap B=B \cap A$.
(c) $A \cup(B \cup C)=(A \cup B) \cup C, A \cap(B \cap C)=(A \cap B) \cap C$.
(d) $A, B \subset A \cup B, A \cap B \subset A, B$.
(e) $A \cap\left(\bigcup_{\alpha \in \Gamma} A_{\alpha}\right)=\bigcup_{\alpha \in \Gamma}\left(A \cap A_{\alpha}\right)$.
(f) $A \cup\left(\bigcap_{\alpha \in \Gamma} A_{\alpha}\right)=\bigcap_{\alpha \in \Gamma}\left(A \cup A_{\alpha}\right)$.
(g) $(\tilde{0})^{c}=\tilde{1},(\tilde{1})^{c}=\tilde{0}$.
(h) $\left(A^{c}\right)^{c}=A$.
(i) $\left(\bigcup_{\alpha \in \Gamma} A_{\alpha}\right)^{c}=\bigcap_{\alpha \in \Gamma} A_{\alpha}^{c},\left(\bigcap_{\alpha \in \Gamma} A_{\alpha}\right)^{c}=\bigcup_{\alpha \in \Gamma} A_{\alpha}^{c}$.

It is obvious that $\left(D(I)^{X}, \cup, \cap\right)$ is complete lattice satisfying the DeMorgan's Laws.

Definition 1.3 [2]. Let A be an IVS in a group G. Then A is called an interval-valued fuzzy subgroup (in short, $I V G$) in G if it satisfies the conditions : For any $x, y \in G$,
(a) $A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(x) \wedge A^{U}(y)$.
(b) $A^{L}\left(x^{-1}\right) \geq A^{L}(x)$ and $A^{U}\left(x^{-1}\right) \geq A^{U}(x)$.

We will denote the set of all IVGs of G as $\operatorname{IVG}(G)$.
Result 1.B [2, Proposition 3.1]. Let A be an IVG in a group G.
(a) $A\left(x^{-1}\right)=A(x), \forall x \in G$.
(b) $A^{L}(e) \geq A^{L}(x)$ and $A^{U}(e) \geq A^{U}(x), \forall x \in G$, where e is the identity of G.

Throughout this paper, $L=(L,+, \cdot)$ denotes a lattice, where " + " and "." denote the sup and inf, respectively. For a general background of lattice theory, we refer to [1]. Moreover, we will denote by R a ring having the zero "0", with respect to binary operations "+" and".".

2. Lattice of interval-valued fuzzy subrings

Definition 2.1 [5]. Let R be a ring and let $A \in D(I)^{R}$. Then A is called an interval-valued fuzzy subring(in short, $I V R)$ of R if it satisfies the following conditions: For any $x, y \in R$,
(i) $A^{L}(x+y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x+y) \geq A^{U}(x) \wedge A^{U}(y)$.
(ii) $A^{L}(-x) \geq A^{L}(x)$ and $A^{U}(-x) \geq A^{U}(x)$.
(iii) $A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(x) \wedge A^{U}(y)$.

We will denote the set of all IVRs of R as $\operatorname{IVR}(\mathrm{R})$.

From Result 1.B, it can be easily verified that if $A \in \operatorname{IVR}(\mathrm{R}), A^{L}(x) \leq$ $A^{L}(0), A^{U}(x) \leq A^{U}(0)$ and $A(x)=A(-x)$ for each $x \in R$. We shall call $A(0)$ as the tip of the interval-valued fuzzy subring A.

Result 2.A [5, Proposition 6.2]. Let $A \in D(I)^{R}$. Then $A \in \operatorname{IVR}(\mathrm{R})$ if and only if for any $x, y \in R$,
(a) $A^{L}(x-y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x-y) \geq A^{U}(x) \wedge A^{U}(y)$.
(b) $A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(x) \wedge A^{U}(y)$.

Proposition 2.2. let $\left\{A_{\alpha}\right\}_{\alpha \in \Gamma} \subset \operatorname{IVR}(\mathrm{R})$. Then $\cap_{\alpha \in \Gamma} A_{\alpha} \in \operatorname{IVR}(\mathrm{R})$.
Proof. let $A=\cap_{\alpha \in \Gamma} A_{\alpha}$ and let $x, y \in R$. Then

$$
\begin{aligned}
A^{L}(x-y) & =\bigwedge_{\alpha \in \Gamma} A_{\alpha}^{L}(x-y) \geq \bigwedge_{\alpha \in \Gamma}\left(A_{\alpha}^{L}(x) \wedge A_{\alpha}^{L}(y)\right)\left(\text { Since } A^{\alpha} \in \operatorname{IVR}(\mathrm{R})\right) \\
& =\left(\bigwedge_{\alpha \in \Gamma} A_{\alpha}^{L}(x)\right) \wedge\left(\bigwedge_{\alpha \in \Gamma} A_{\alpha}^{L}(y)\right)=\left(\bigcap_{\alpha \in \Gamma} A_{\alpha}\right)^{L}(x) \wedge\left(\bigcap_{\alpha \in \Gamma} A_{\alpha}\right)^{L}(y) \\
& =A^{L}(x) \wedge A^{L}(y) .
\end{aligned}
$$

By the similar arguments, we have that $A^{U}(x-y) \geq A^{U}(x) \wedge A^{U}(y)$. Similarly, we have $A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(x) \wedge$ $A^{U}(y)$. Hence, by Result 2.A, $A=\bigcap_{\alpha \in \Gamma} A_{\alpha} \in \operatorname{IVR}(\mathrm{R})$.
Definition 2.3. Let $A \in \operatorname{IVR}(\mathrm{R})$. Then an interval-valued fuzzy subring generated by A is the least interval-valued fuzzy subring of R containing A and denoted by (A).

Here, we construct the lattice of interval-valued fuzzy subrings such as interval-valued fuzzy (left, right) ideals. The common feature of all these constructions is that the intersection of an arbitrary family of interval-valued fuzzy subrings is always an interval-valued fuzzy subring(See proposition 2.2). Therefore, we consider the inf of a family of interval-valued fuzzy subrings to be their intersection, whereas the union of two interval-valued fuzzy subrings may not be an interval-valued fuzzy subring. Hence, we shall always be talking the sup of a family of intervalvalued fuzzy subrings to be the interval-valued fuzzy subring generated by the union of that family. The outcome of the above discussion can be described can be described by the following propositions.

Proposition 2.4. IVR(R) forms a complete lattice under the ordering of interval-valued fuzzy set inclusion \subset.

Definition 2.5 [5]. Let $A \in \operatorname{IVR}(\mathrm{R})$. Then A is called an:
(1) interval-valued fuzzy left ideal (in short, IVLI) in R if $A^{L}(x y) \geq$ $A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(y)$ for any $x, y \in R$.
(2) interval-valued fuzzy right ideal (in short, IVRI) in X if $A^{L}(x y) \geq$ $A^{L}(x)$ and $A^{U}(x y) \geq A^{U}(x)$ for any $x, y \in R$.
(3) interval-valued fuzzy ideal (in short, IVI) in X if it both an IVLI and an IVRI in R.

We will denote the set of all IVIs [resp. IVLIs and IVRIs] of R as $\operatorname{IVI}(\mathrm{R})[$ resp. $\operatorname{IVLI}(\mathrm{R})$ and $\operatorname{IVRI}(\mathrm{R})]$. In particular, $\operatorname{IVI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ denotes the set of all IVIs with the same tip " $\left[\lambda_{0}, \mu_{0}\right]$ ". It is clear that $\operatorname{IVI}(\mathrm{R})=\operatorname{IVLI}(\mathrm{R}) \cap \operatorname{IVRI}(\mathrm{R})$.

Result 2.B [5, Proposition 6.5]. Let $A \in D(I)^{R}$. Then $A \in$ $\operatorname{IVI}(\mathrm{R})[$ resp. $\operatorname{IVLI}(\mathrm{R})$ and $\operatorname{IVRI}(\mathrm{R})]$ if and only if for any $x, y \in R$,
(a) $A^{L}(x-y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x-y) \geq A^{U}(x) \wedge A^{U}(y)$.
(b) $A^{L}(x y) \geq A^{L}(x) \vee A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(x) \vee A^{U}(y)$ [resp. $A^{L}(x y) \geq A^{L}(y), A^{U}(x y) \geq A^{U}(y)$ and $A^{L}(x y) \geq A^{L}(x), A^{U}(x y) \geq$ $\left.A^{U}(x)\right]$.

The proof of the following result is similar to Proposition 2.2.

Proposition 2.6. Let $\left\{A_{\alpha}\right\}_{\alpha \in \Gamma} \subset \operatorname{IVI}(\mathrm{R})[$ resp. $\operatorname{IVLI}(\mathrm{R})$ and $\operatorname{IVRI}(\mathrm{R})]$. Then $\bigcap_{\alpha \in \Gamma} A_{\alpha} \in \operatorname{IVI}(\mathrm{R})[$ resp. $\operatorname{IVLI}(\mathrm{R})$ and $\operatorname{IVRI}(\mathrm{R})]$.

Definition 2.7. Let $A \in D(I)^{R}$. Then the IVI[resp. IVLI and IVRI] generated by A is the least IVI[resp. IVLI and IVRI] of R containing A and denoted by (A).

The following is easily verified.
Proposition 2.8. (a) $\operatorname{IVI}(\mathrm{R})[$ resp. $\operatorname{IVLI}(\mathrm{R})$ and $\operatorname{IVRI}(\mathrm{R})]$ is a meet complete sublattice of $\operatorname{IVR}(\mathrm{R})$.
(b) $\operatorname{IVI}_{[\lambda, \mu]}(R)$ is a complete sublattice of $\operatorname{IVR}(\mathrm{R})$.

Definition 2.9[2,5]. Let X be a set and let $A \in D(I)^{X}$. Then A is said to have the sup-property if for each $Y \in P(X)$, there exists $y_{0} \in Y$ such that $A\left(y_{0}\right)=\left[\bigvee_{x \in Y} A^{L}(x), \bigvee_{x \in Y} A^{U}(x)\right]$, where $P(X)$ denotes the
power set of X.
Definition 2.10. Let $A, B \in D(I)^{R}$. Then the sum $A+B$ and the product $A \circ B$ of A and B are defined as follows, respectively: For each $z \in R$,
(i) $(A+B)(z)=\left[\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right), \bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{U}(y)\right)\right]$,
(ii)
$(A \circ B)(z)= \begin{cases}{\left[\bigvee_{z=x y}\left(A^{L}(x) \wedge B^{L}(y)\right), \bigvee_{z=x y}\left(A^{U}(x) \wedge B^{U}(y)\right)\right],} & \text { if } z=x y ; \\ {[0,0],} & \text { otherwise. }\end{cases}$

Definition 2.11. Let X be a set, let $A \in D(I)^{X}$ and let $[\lambda, \mu] \in D(I)$.
(i) [5] The set $A_{[\lambda, \mu]}=\left\{x \in X: A^{L}(x) \geq \lambda\right.$ and $\left.A^{U}(x) \geq \mu\right\}$ is called a $[\lambda, \mu]$-level-subset of A.
(ii) The set $A_{[\lambda, \mu]}^{*}=\left\{x \in X: A^{L}(x)>\lambda\right.$ and $\left.A^{U}(x)>\mu\right\}$ is called a strong $[\lambda, \mu]$-level-subset of A.

The following is the immediate result of Propositions 4.16 and 4.17 in [5].

Theorem 2.12. Let $A \in D(I)^{R}$. Then $A \in \operatorname{IVI}(\mathrm{R})$ if and only if $A_{[\lambda, \mu]}$ is an ideal for each $[\lambda, \mu] \in D(I)$ with $\lambda \leq A^{L}(0)$ and $\mu \leq A^{U}(0)$.

Lemma 2.13. Let $A, B \in \operatorname{IVI}(\mathrm{R})$. If A and B have the sup-property, then $(A+B)_{[\lambda, \mu]}=A_{[\lambda, \mu]}+B_{[\lambda, \mu]}$ for each $[\lambda, \mu] \in D(I)$.

Proof. Let $z \in(A+B)_{[\lambda, \mu]}$. Then

$$
(A+B)^{L}(z)=\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right)
$$

and

$$
(A+B)^{U}(z)=\bigvee_{z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right)
$$

For each decomposition $z=x+y$, we have either $A^{L}(x) \leq B^{L}(y)$ and $A^{U}(x) \leq B^{U}(y)$ or $A^{L}(x) \geq B^{L}(y)$ and $A^{U}(x) \geq B^{U}(y)$. This contradiction leads as to define the following subsets of R :
$X(z)=\left\{x \in R: z=x+y\right.$ for some $y \in R$ such that $A^{L}(x) \leq B^{L}(y)$ and $\left.A^{U}(x) \leq B^{U}(y)\right\}$,
$Y(z)=\left\{x \in R: z=x+y\right.$ for some $y \in R$ such that $A^{L}(x) \geq B^{L}(y)$ and $\left.A^{U}(x) \geq B^{U}(y)\right\}$,
$X^{*}(z)=\left\{x \in R: z=x+y\right.$ for some $y \in R$ such that $A^{L}(x) \geq B^{L}(y)$ and $\left.A^{U}(x) \geq B^{U}(y)\right\}$.
Then clearly $R=X(z) \cup X^{*}(z)$. Since A and B have the sup-property, there exist $x_{0} \in X(z)$ and $y_{0} \in Y(z)$ such that

$$
A^{L}\left(x_{0}\right)=\bigvee_{x \in X(z)} A^{L}(x), A^{U}\left(x_{0}\right)=\bigvee_{x \in X(z)} A^{U}(x)
$$

and

$$
B^{L}\left(y_{0}\right)=\bigvee_{y \in Y(z)} B^{L}(y), B^{U}\left(y_{0}\right)=\bigvee_{y \in Y(z)} B^{U}(y)
$$

Since $x_{0} \in X(z)$, there exists $y_{0}^{\prime} \in R$ with $z=x_{0}+y_{0}^{\prime}$ such that $A^{L}\left(x_{0}\right) \leq$ $B^{L}\left(y_{0}^{\prime}\right)$ and $A^{U}\left(x_{0}\right) \leq B^{U}\left(y_{0}^{\prime}\right)$.
Since $y_{0} \in Y(z)$, there exists $x_{0}^{\prime} \in R$ with $z=x_{0}^{\prime}+y_{0}$ such that $A^{L}\left(x_{0}^{\prime}\right) \geq$ $B^{L}\left(y_{0}\right)$ and $A^{U}\left(x_{0}^{\prime}\right) \geq B^{U}\left(y_{0}\right)$.
But for $A\left(x_{0}\right)$ and $B\left(y_{0}\right)$, we have either $A^{L}\left(x_{0}\right) \geq B^{L}\left(y_{0}\right)$ and $A^{U}\left(x_{0}\right) \geq$ $B^{U}\left(y_{0}\right)$ or $A^{L}\left(x_{0}\right) \leq B^{L}\left(y_{0}\right)$ and $A^{U}\left(x_{0}\right) \leq B^{U}\left(y_{0}\right)$.

Case (i): Suppose $A^{L}\left(x_{0}\right) \geq B^{L}\left(y_{0}\right)$ and $A^{U}\left(x_{0}\right) \geq B^{U}\left(y_{0}\right)$. Then

$$
\begin{aligned}
\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right)= & \bigvee_{x \in R}\left(A^{L}(x) \wedge B^{L}(z-x)\right)(\text { Since } y=z-x) \\
= & \left(\bigvee_{x \in X(z)}\left(A^{L}(x) \wedge B^{L}(z-x)\right)\right) \vee\left(\bigvee _ { x \in X ^ { * } (z) } \left(A^{L}(x)\right.\right. \\
& \left.\left.\wedge B^{L}(z-x)\right)\right)\left(\text { Since } R=X(z) \cup X^{*}(z)\right) \\
= & \left(\bigvee_{x \in X(z)}\left(A^{L}(x) \wedge B^{L}(y)\right)\right) \vee\left(\bigvee_{x \in Y(z)}\left(A^{L}(x) \wedge B^{L}(z-x)\right)\right) \\
= & \left(\bigvee_{x \in X(z)} A^{L}(x) \vee\left(\bigvee_{x \in Y(z)} B^{L}(y)\right)\right) \\
= & A^{L}\left(x_{0}\right) \wedge B^{L}\left(y_{0}\right)(\text { By }(2.2) \\
= & A^{L}\left(x_{0}\right) .(\text { By the hypothesis })
\end{aligned}
$$

Similarly, we have that $\bigvee_{z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right)=A^{U}\left(x_{0}\right)$. Thus, by (2.1), $A^{L}\left(x_{0}\right)=(A+B)^{L}(z) \geq \lambda$ and $A^{U}\left(x_{0}\right)=(A+B)^{U}(z) \geq \mu$. So $x_{0} \in A_{[\lambda, \mu]}$. Since $B^{L}\left(y_{0}^{\prime}\right) \geq A^{L}\left(x_{0}\right)$ and $B^{U}\left(y_{0}^{\prime}\right) \geq A^{U}\left(x_{0}\right), B^{L}\left(y_{0}^{\prime} \geq \lambda\right.$ and $B^{U}\left(y_{0}^{\prime} \geq \mu\right.$. Then $y_{0}^{\prime} \in B_{[\lambda, \mu]}$. Thus $z=x_{0}+y_{0} \in A_{[\lambda, \mu]}+B_{[\lambda, \mu]}$.

Case (ii): Suppose $A^{L}\left(x_{0}\right) \leq B^{L}\left(y_{0}\right)$ and $A^{U}\left(x_{0}\right) \leq B^{U}\left(y_{0}\right)$. Then as in Case(i), it follows that $x_{0} \in A_{[\lambda, \mu]}$ and $y_{0} \in B_{[\lambda, \mu]}$. Thus $z=x_{0}^{\prime}+y_{0} \in$ $A_{[\lambda, \mu]}+B_{[\lambda, \mu]}$. So, in either case, $z \in A_{[\lambda, \mu]}+B_{[\lambda, \mu]}$. Hence $(A+B)_{[\lambda, \mu]} \subset$ $A_{[\lambda, \mu]}+B_{[\lambda, \mu]}$. Now let $z \in A_{[\lambda, \mu]}+B_{[\lambda, \mu]}$. Then there exist $x_{0} \in A_{[\lambda, \mu]}$ and $y_{0} \in B_{[\lambda, \mu]}$ such that $z=x_{0}+y_{0}$. Thus $A^{L}\left(x_{0}\right) \geq \lambda, A^{U}\left(x_{0}\right) \geq \mu$ and $B^{L}\left(x_{0}\right) \geq \lambda, B^{U}\left(x_{0}\right) \geq \mu$. So

$$
(A+B)^{L}(z)=\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right) \geq \lambda
$$

and

$$
(A+B)^{U}(z)=\bigvee_{z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right) \geq \mu
$$

Thus $z \in(A+B)_{[\lambda, \mu]}$. Hence $A_{[\lambda, \mu]}+B_{[\lambda, \mu]} \subset(A+B)_{[\lambda, \mu]}$. Therefore $(A+B)_{[\lambda, \mu]}=A_{[\lambda, \mu]}+B_{[\lambda, \mu]}$. This completes the proof.

Lemma 2.14. Let $A, B \in D(I)^{R}$. and let $[\lambda, \mu] \in D(I)$. Then $(A+B)_{[\lambda, \mu]}^{*}=A_{[\lambda, \mu]}^{*}+B_{[\lambda, \mu]}^{*}$.

Proof. Suppose $(A+B)_{[\lambda, \mu]}^{*}=\emptyset$. Then clearly $(A+B)_{[\lambda, \mu]}^{*} \subset A_{[\lambda, \mu]}^{*}+$ $B_{[\lambda, \mu]}^{*}$. Suppose $(A+B)_{[\lambda, \mu]}^{*} \neq \emptyset$ and let $z \in(A+B)_{[\lambda, \mu]}^{*}$. Then

$$
(A+B)^{L}(z)=\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right)>\lambda
$$

and

$$
(A+B)^{U}(z)=\bigvee_{z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right)>\mu
$$

Thus there exist $x_{0}, y_{0} \in R$ with $z=x_{0}+y_{0}$ such that $A^{L}\left(x_{0}\right) \wedge B^{L}\left(y_{0}\right)>$ λ and $A^{U}\left(x_{0}\right) \wedge B^{U}\left(y_{0}\right)>\mu$. So $A^{L}\left(x_{0}\right)>\lambda, A^{U}\left(x_{0}\right)>\mu$ and $B^{L}\left(y_{0}\right)>$ $\lambda, B^{U}\left(y_{0}\right)>\mu$. Then $x_{0} \in A_{[\lambda, \mu]}^{*}$ and $y_{0} \in B_{[\lambda, \mu]}^{*}$. Thus $z=x_{0}+y_{0} \in$ $A_{[\lambda, \mu]}^{*}+B_{[\lambda, \mu]}^{*}$. So $(A+B)_{[\lambda, \mu]}^{*} \subset A_{[\lambda, \mu]}^{*}+B_{[\lambda, \mu]}^{*}$.

Now for each $[\lambda, \mu] \in D\left(I_{1}\right)$, suppose

$$
\left(\bigvee_{x \in R} A^{L}(x)\right) \wedge\left(\bigvee_{y \in R} B^{L}(y)\right) \leq \lambda
$$

and

$$
\left(\bigvee_{x \in R} A^{U}(x)\right) \wedge\left(\bigvee_{y \in R} B^{U}(y)\right) \leq \mu
$$

Then one of $A_{[\lambda, \mu]}^{*}$ and $B_{[\lambda, \mu]}^{*}$ is \emptyset. Thus $A_{[\lambda, \mu]}^{*}+B_{[\lambda, \mu]}^{*}=\emptyset \subset(A+B)_{[\lambda, \mu]}^{*}$. Otherwise, $A_{[\lambda, \mu]}^{*} \neq \emptyset$ and $B_{[\lambda, \mu]}^{*} \neq \emptyset$. Then $A_{[\lambda, \mu]}^{*}+B_{[\lambda, \mu]}^{*} \neq \emptyset$. Let $z \in A_{[\lambda, \mu]}^{*}+B_{[\lambda, \mu]}^{*}$. Then it exist $x_{0} \in A_{[\lambda, \mu]}^{*}$ and $y_{0} \in B_{[\lambda, \mu]}^{*}, ~$ such that $z=x_{0}+y_{0}$ and

$$
(A+B)^{L}(z)=\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right) \geq A^{L}\left(x_{0}\right) \wedge B^{L}\left(y_{0}\right)>\lambda
$$

and

$$
(A+B)^{U}(z)=\bigvee_{z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right) \geq A^{U}\left(x_{0}\right) \wedge B^{U}\left(y_{0}\right)>\mu
$$

Thus $z \in(A+B)_{[\lambda, \mu]}^{*}$. So $A_{[\lambda, \mu]}^{*}+B_{[\lambda, \mu]}^{*} \subset(A+B)_{[\lambda, \mu]}^{*}$. Hence $(A+B)_{[\lambda, \mu]}^{*}=A_{[\lambda, \mu]}^{*}+B_{[\lambda, \mu]}^{*}$. This completes the proof.

Theorem 2.15. Let $A \in D(I)^{R}$. Then $A \in \operatorname{IVI}(\mathrm{R})[$ resp. $\operatorname{IVLI}(\mathrm{R})$ and $\operatorname{IVRI}(\mathrm{R})]$ if and only if $A_{[\lambda, \mu]}^{*}=\emptyset$ or $A_{[\lambda, \mu]}^{*} \in \mathrm{I}(\mathrm{R})[$ resp. $\mathrm{LI}(\mathrm{R})$ and $\mathrm{RI}(\mathrm{R})]$ for each $[\lambda, \mu] \in D(I)$, where $\mathrm{I}(\mathrm{R})[\operatorname{resp} . \mathrm{LI}(\mathrm{R})$ and $\mathrm{RI}(\mathrm{R})]$ denotes the set of all ideals[resp. left ideals and right ideals] of R.

Proof. We prove this lemma for left ideal, since other cases are similar. It is clear that $A=\mathbf{0}$ if and only if $A_{[\lambda, \mu]}^{*}=\emptyset$ for each $[\lambda, \mu] \in D(I)$. Now we assume that $A \neq \mathbf{0}$.
(\Rightarrow) : Suppose $A \in \operatorname{IVLI}(\mathrm{R})$ and let $[\lambda, \mu] \in D(I)$. Let $x, y \in A_{[\lambda, \mu]}^{*}$ and let $z \in R$. Then

$$
\begin{aligned}
A^{L}(x-y) & \geq A^{L}(x) \wedge A^{L}(y)(\text { Since } A \in \operatorname{IVLI}(\mathrm{R})) \\
& >\lambda\left(\text { Since } x, y \in A_{[\lambda, \mu]}^{*}\right)
\end{aligned}
$$

and

$$
A^{L}(x-y) \geq A^{L}(x) \wedge A^{L}(y)>\mu
$$

Also,

$$
\begin{aligned}
A^{L}(z x) & \geq A^{L}(x)(\text { Since } A \in \operatorname{IVLI}(\mathrm{R})) \\
& >\lambda\left(\text { Since } x \in A_{[\lambda, \mu]}^{*}\right)
\end{aligned}
$$

and

$$
A^{U}(z x) \geq A^{U}(x)>\mu
$$

Thus $x-y \in A_{[\lambda, \mu]}^{*}$ and $z x \in A_{[\lambda, \mu]}^{*}$. Hence $A_{[\lambda, \mu]}^{*} \in \operatorname{LI}(\mathrm{R})$.
(\Leftarrow) : Suppose the necessary condition holds. For any $x, y \in R$, let $A(x)=[\lambda, \mu]$ and let $A(y)=[s, t]$ such that $\lambda \leq s$ and $\mu \leq t$.

Case (i): Suppose $[\lambda, \mu]=[0,0]$. Then

$$
A^{L}(x-y) \geq \lambda=A^{L}(x) \wedge A^{L}(y), A^{U}(x-y) \geq \mu=A^{U}(x) \wedge A^{U}(y)
$$

and

$$
A^{L}(z x) \geq \lambda=A^{L}(x) \text { and } A^{U}(z x) \geq \mu=A^{U}(x), \text { foreach } z \in R .
$$

Thus $A \in \operatorname{IVLI}(\mathrm{R})$.
Case (ii): Suppose $[\lambda, \mu] \neq[0,0]$. For each $\epsilon>0$, let $\epsilon<\lambda$. Then we have

$$
A^{L}(y)>s-\epsilon \geq \lambda-\epsilon, A^{U}(y)>t-\epsilon \geq \mu-\epsilon .
$$

and

$$
A^{L}(x)>\lambda-\epsilon, A^{U}(x)>\mu-\epsilon .
$$

Thus $x, y \in A_{[\lambda-\epsilon, \mu-\epsilon]}^{*}$. By the hypothesis, $A_{[\lambda-\epsilon, \mu-\epsilon]}^{*} \in \mathrm{I}(\mathrm{R})$. So $x-y \in$ $A_{[\lambda-\epsilon, \mu-\epsilon]}^{*}$ and $z x \in A_{[\lambda-\epsilon, \mu-\epsilon]}^{*}$ for each $z \in R$. Then $A^{L}(x-y)>\lambda-$ $\epsilon, A^{U}(x-y)>\mu-\epsilon$ and $A^{L}(z x)>\lambda-\epsilon, A^{U}(z x)>\mu-\epsilon$ for each $z \in R$. Since ϵ is an arbitrary, $\left.A^{L}(x-y) \geq \lambda=A^{L}(x) \wedge A^{L}(y)\right), A^{U}(x-y) \geq$ $\mu=A^{U}(x) \wedge A^{U}(y)$ and $A^{L}(z x) \geq \lambda=A^{L}(x), A^{U}(z x) \geq \mu=A^{U}(x)$. Hence $A \in \operatorname{IVLI}(\mathrm{R})$. This completes the proof.

Proposition 2.16. $\operatorname{IVLI}_{\left[\lambda_{0}, \mu_{0}\right]}(R), \operatorname{IVRI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ and $\operatorname{IVI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ are sublattices of $\operatorname{IVR}(\mathrm{R})$ and for any $A, B \in \operatorname{IVLI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)\left[\right.$ resp. $\operatorname{IVRI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ and $\left.\operatorname{IVI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)\right], A \vee B=A+B$.

Proof. It is easy to see that $\operatorname{IVLI}_{\left[\lambda_{0}, \mu_{0}\right]}(R), \operatorname{IVRI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ and $\operatorname{IVI}_{\left[\lambda_{0}, \mu_{0}\right]}$ (R) are sublattices of $\operatorname{IVR}(\mathrm{R})$. We do only prove that $A \vee B=A+B$ for any $A, B \in \operatorname{IVLI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)\left(\right.$ For $\operatorname{IVRI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ and $\operatorname{IVI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$, the proofs are similar). Let $z \in R$. Then

$$
(A+B)^{L}(z)=\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right) \leq A^{L}(0) \wedge B^{L}(0)=\lambda_{0}
$$

and

$$
(A+B)^{U}(z)=\bigvee_{z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right) \leq A^{U}(0) \wedge B^{U}(0)=\mu_{0}
$$

Thus $\bigvee_{z=x+y}(A+B)^{L}(z) \leq \lambda_{0}$ and $\bigvee_{z=x+y}(A+B)^{U}(z) \leq \mu_{0}$. On the other hand, $\bigvee_{z \in R}(A+B)^{L}(z) \geq(A+B)^{L}(0)=\bigvee_{0=x+y}\left(A^{L}(x) \wedge\right.$ $\left.B^{L}(y)\right) \geq A^{L}(0) \wedge B^{L}(0)=\lambda_{0}$. By the similar arguments, we have that $\bigvee_{z \in R}(A+B)^{U}(z) \geq \mu_{0}$. So

$$
\begin{equation*}
\left[\bigvee_{z \in R}(A+B)^{L}(z), \bigvee_{z \in R}(A+B)^{U}(z)\right]=(A+B)(0)=\left[\lambda_{0}, \mu_{0}\right] \tag{2.3}
\end{equation*}
$$

For each $\left[\lambda_{0}, \mu_{0}\right] \in D\left(I_{1}\right)$ with $\lambda<\lambda_{0}$ and $\mu<\mu_{0},(A+B)_{[\lambda, \mu]}^{*} \neq \emptyset$. By Lemma 2.14, $(A+B)_{[\lambda, \mu]}^{*}=A_{\lambda, \mu]}^{*}+B_{[\lambda, \mu]}^{*}$. Since $A, B \in \operatorname{IVLI}(\mathrm{R})$, by Theorem 2.15, $A_{[\lambda, \mu]}^{*}, B_{[\lambda, \mu]}^{*} \in \operatorname{LI}(\mathrm{R})$. Thus $(A+B)_{[\lambda, \mu]}^{*} \in \operatorname{LI}(\mathrm{R})$. So, by Theorem 2.15, $A+B \in \operatorname{IVLI}(\mathrm{R})$. Moreover,

$$
\begin{equation*}
A+B \in \operatorname{IVLI}_{\left[\lambda_{0}, \mu_{0}\right]}(R) \tag{2.4}
\end{equation*}
$$

Let $z \in R$. Then

$$
(A+B)^{L}(z)=\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right) \geq A^{L}(z) \wedge B^{L}(0)=A^{L}(z)
$$

and

$$
(A+B)^{U}(z)=\bigvee_{z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right) \geq A^{U}(z) \wedge B^{U}(0)=B^{U}(z)
$$

Thus $A \subset A+B$. By the similar arguments, we have $B \subset A+B$. So

$$
\begin{equation*}
A \subset A+B \text { and } B \subset A+B \tag{2.5}
\end{equation*}
$$

Now let $C \in \operatorname{IVLI}(\mathrm{R})$ such that $A \subset C$ and $B \subset C$ and let $z \in R$. Then

$$
\begin{aligned}
(A+B)^{L}(z) & =\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right) \leq \bigvee_{z=x+y}\left(C^{L}(x) \wedge C^{L}(y)\right) \\
& \leq \bigvee_{z=x+y} C^{L}(z)\left(\text { Since } C^{L}(z)=C^{L}(x+y) \geq C^{L}(x) \wedge C^{L}(y)\right) \\
& =C^{L}(z) .
\end{aligned}
$$

Similarly, we have that $(A+B)^{U}(z) \geq C^{U}(z)$. Thus

$$
\begin{equation*}
A+B \subset C . \tag{2.6}
\end{equation*}
$$

Hence, by (2.3),(2.4), (2.5) and (2.6), $A+B=A \vee B$. This completes the proof.

Remark 2.16. (a) $A \vee B=A+B$ is not true in $\operatorname{IVR}(\mathrm{R}), \operatorname{IVLI}(\mathrm{R})$, $\operatorname{IVRI}(\mathrm{R})$ and $\operatorname{IVI}(\mathrm{R})$ (See Example 2.17).
(b) As well-known, $S+T$ is not subring in general, where S and T are subrings of R. Hence $A \vee B=A+B$ is not true in $\operatorname{IVR}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ (See Example 2. 18).

Example 2.17. We define two mappings $A: R \rightarrow D(I)$ and $B: R \rightarrow$ $D(I)$ as follows, respectively: For each $x \in R$,

$$
A(x)=[0.4,0.5] \text { and } B(x)=[0.3,0.6] .
$$

Then clearly $A, B \in \operatorname{IVR}(\mathrm{R})[$ resp. $\operatorname{IVLI}(\mathrm{R}), \operatorname{IVRI}(\mathrm{R})$ and $\operatorname{IVI}(\mathrm{R})]$. Moreover, it is easy to see that $(A+B)(0)=[0.3,0.6]$ and $(A \vee B)(0)=$ [0.4, 0.5].

Example 2.18. Let $R=\{(a, b): a, b \in \mathbb{Z}\}$, where \mathbb{Z} is the ring of integers. We define the additive operation and the multiplicative operation on R as follows, respectively: For any $(a, b),(c, d) \in R$,

$$
(a, b)+(c, d)=(a+c, b+d) \text { and }(a, b) \cdot(c, d)=(0,0)
$$

Then $(R,+, \cdot)$ forms a ring with zero $(0,0)$. Now we define three mappings $A, B, C: R \rightarrow D(I)$ as follows, respectively: For each $(x, y) \in R$,

$$
\begin{aligned}
& A(x, y)= \begin{cases}{\left[\frac{1}{3}, \frac{3}{5}\right],} & \text { if } y=0 \\
{[0,0],} & \text { if } y \neq 0\end{cases} \\
& B(x, y)= \begin{cases}{\left[\frac{1}{3}, \frac{3}{5}\right],} & \text { if } x=0 \\
{[0,0],} & \text { if } x \neq 0\end{cases} \\
& C(x, y)= \begin{cases}{\left[\frac{1}{3}, \frac{3}{5}\right],} & \text { if } x=y \\
{[0,0],} & \text { if } x \neq y\end{cases}
\end{aligned}
$$

Then it is easy to see that $A, B, C \in \operatorname{IVI}(\mathrm{R})$. Let $(x, y) \in R$. Then

$$
\begin{aligned}
(A+B)^{L}(x, y) & =\bigvee_{(x, y)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)}\left(A^{L}\left(x_{1}, y_{1}\right) \wedge B^{L}\left(x_{2}, y_{2}\right)\right) \\
& \leq A^{L}(x, 0) \wedge B^{L}(0, y)=\frac{1}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
(A+B)^{U}(x, y) & =\bigvee_{(x, y)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)}\left(A^{U}\left(x_{1}, y_{1}\right) \wedge B^{U}\left(x_{2}, y_{2}\right)\right) \\
& \leq A^{U}(x, 0) \wedge B^{U}(0, y)=\frac{3}{5}
\end{aligned}
$$

Thus $(C \wedge(A+B))^{L}(x, y)=C^{L}(x, y) \wedge(A+B)^{L}(x, y)=C^{L}(x, y)$ and $(C \wedge(A+B))^{U}(x, y)=C^{U}(x, y) \wedge(A+B)^{U}(x, y)=C^{U}(x, y)$. So $C \wedge(A+B)=C$. On the other hand,

$$
(C \wedge A)^{L}(x, y)=C^{L}(x, y) \wedge A^{L}(x, y)= \begin{cases}\frac{1}{3}, & \text { if }(x, y)=(0,0) ; \\ 0, & \text { if }(x, y) \neq(0,0) .\end{cases}
$$

and

$$
(C \wedge A)^{U}(x, y)=C^{U}(x, y) \wedge A^{U}(x, y)= \begin{cases}\frac{3}{5}, & \text { if }(x, y)=(0,0) ; \\ 0, & \text { if }(x, y) \neq(0,0) .\end{cases}
$$

Also,

$$
(C \wedge B)^{L}(x, y)=C^{L}(x, y) \wedge B^{L}(x, y)= \begin{cases}\frac{1}{3}, & \text { if }(x, y)=(0,0) ; \\ 0, & \text { if }(x, y) \neq(0,0) .\end{cases}
$$

and

$$
(C \wedge B)^{U}(x, y)=C^{U}(x, y) \wedge B^{U}(x, y)= \begin{cases}\frac{3}{5}, & \text { if }(x, y)=(0,0) ; \\ 0, & \text { if }(x, y) \neq(0,0) .\end{cases}
$$

Thus

$$
((C \wedge A)+(C \wedge B))^{L}(x, y)= \begin{cases}\frac{1}{3}, & \text { if }(x, y)=(0,0) ; \\ 0, & \text { if }(x, y) \neq(0,0) .\end{cases}
$$

and

$$
((C \wedge A)+(C \wedge B))^{U}(x, y)=\left\{\begin{array}{cl}
\frac{3}{5}, & \text { if }(x, y)=(0,0) \\
0, & \text { if }(x, y) \neq(0,0)
\end{array}\right.
$$

So $C \wedge(A+B) \neq(C \wedge A)+(C \wedge B)$. Hence $\operatorname{IVI}(\mathrm{R})$ is not distributive.
Lemma 2.19. Let $A, B \in \operatorname{IVI}(\mathrm{R})$. If A and B have the sup-property, then the following holds:
(a) $A+B$ has the sup-property.
(b) $A \cap B$ has the sup-property.

Proof. (a) Let S be any subset of R. Then

$$
\begin{aligned}
\bigvee_{z \in S}(A+B)^{L}(z) & =\bigvee_{z \in S}\left(\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right)\right) \\
& =\bigvee_{z \in S, z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right)
\end{aligned}
$$

Similarly, we have that

$$
\begin{aligned}
\bigvee_{z \in S}(A+B)^{U}(z) & =\bigvee_{z \in S}\left(\bigvee_{z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right)\right) \\
& =\bigvee_{z \in S, z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right) .
\end{aligned}
$$

Let us define two subsets $X(S)$ and $Y(S)$ of R by
$X(S)=\{x \in R: z \in S, z=x+y$ for some $y \in R$ such that $A^{L}(x) \leq B^{L}(y)$ and $\left.A^{U}(x) \leq B^{U}(y)\right\}$,
$Y(S)=\{y \in R: z \in S, z=x+y$ for some $x \in R$ such that $A^{L}(x) \geq B^{L}(y)$ and $\left.A^{U}(x) \geq B^{U}(y)\right\}$.
Since A and B have the sup-property, there exist $x^{\prime} \in X(S)$ and $y^{\prime \prime} \in$ $Y(S)$ such that

$$
A^{L}\left(x^{\prime}\right)=\bigvee_{x \in X(S)}\left(A^{L}(x), A^{U}\left(x^{\prime}\right)\right)=\bigvee_{x \in X(S)} A^{U}(x)
$$

and

$$
\begin{equation*}
B^{L}\left(y^{\prime \prime}\right)=\bigvee_{y \in Y(S)}\left(B^{L}(y), B^{U}\left(y^{\prime \prime}\right)\right)=\bigvee_{y \in Y(S)} B^{U}(y) \tag{2.7}
\end{equation*}
$$

Since $x^{\prime} \in X(S)$, there exists $z_{1} \in S$ such that $z_{1}=x^{\prime}+y^{\prime}$ for some $y^{\prime} \in R$ satisfying $A^{L}\left(x^{\prime}\right) \leq B^{L}\left(y^{\prime}\right)$ and $A^{U}\left(x^{\prime}\right) \leq B^{U}\left(y^{\prime}\right)$. Also, since $y^{\prime \prime} \in Y(S)$, there exists $z_{2} \in S$ such that $z_{2}=x^{\prime \prime}+y^{\prime \prime}$ for some $x^{\prime \prime} \in R$ satisfying $A^{L}\left(x^{\prime \prime}\right) \geq B^{L}\left(y^{\prime \prime}\right)$ and $A^{U}\left(x^{\prime \prime}\right) \geq B^{U}\left(y^{\prime \prime}\right)$.

On the other hand, we have either $A^{L}\left(x^{\prime}\right) \geq B^{L}\left(y^{\prime \prime}\right), A^{U}\left(x^{\prime}\right) \geq$ $B^{U}\left(y^{\prime \prime}\right)$ or $A^{L}\left(x^{\prime}\right) \leq B^{L}\left(y^{\prime \prime}\right), A^{U}\left(x^{\prime}\right) \leq B^{U}\left(y^{\prime \prime}\right)$.

Case (i): Suppose $A^{L}\left(x^{\prime}\right) \geq B^{L}\left(y^{\prime \prime}\right)$ and $A^{U}\left(x^{\prime}\right) \geq B^{U}\left(y^{\prime \prime}\right)$. Then

$$
\begin{aligned}
\bigvee_{z \in S, z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right)= & \bigvee_{x \in X(S)}\left(A^{L}(x) \wedge B^{L}(y)\right) \vee\left(\bigvee_{y \in Y(S)}\left(A^{L}(x) \wedge B^{L}(y)\right)\right) \\
& =\left(\bigvee_{x \in X(S)} A^{L}(x)\right) \vee\left(\bigvee_{y \in Y(S)} B^{L}(y)\right) \\
= & A^{L}\left(x^{\prime}\right) \vee B^{L}\left(y^{\prime \prime}\right)(\text { By }(2.7)) \\
= & A^{L}\left(x^{\prime}\right) .(\text { By the hypothesis })
\end{aligned}
$$

Similarly, we have that $\bigvee_{z \in S, z=x+y}\left(A^{U}(x) \wedge B^{U}(y)\right)=A^{U}\left(x^{\prime}\right)$. Thus

$$
\bigvee_{z \in S}(A+B)^{L}(z)=A^{L}\left(x^{\prime}\right)
$$

and

$$
\begin{equation*}
\bigvee_{z \in S}(A+B)^{U}(z)=A^{U}\left(x^{\prime}\right) \tag{2.8}
\end{equation*}
$$

Now we show that

$$
\bigvee_{z \in S}(A+B)^{L}(z)=(A+B)^{L}\left(z_{1}\right) \text { and } \bigvee_{z \in S}(A+B)^{U}(z)=(A+B)^{U}\left(z_{1}\right)
$$

For decompositions $z_{1}=x_{i}^{\prime}+y_{i}^{\prime}$, we have

$$
(A+B)^{L}\left(z_{1}\right)=\bigvee_{z_{1}=x_{i}^{\prime}+y_{i}^{\prime}}\left(A^{L}\left(x_{i}^{\prime}\right) \wedge B^{L}\left(y_{i}^{\prime}\right)\right)
$$

and

$$
(A+B)^{U}\left(z_{1}\right)=\bigvee_{z_{1}=x_{i}^{\prime}+y_{i}^{\prime}}\left(A^{U}\left(x_{i}^{\prime}\right) \wedge B^{U}\left(y_{i}^{\prime}\right)\right)
$$

Again, we construct subset $X\left(z_{1}\right)$ and $Y\left(z_{1}\right)$ of R as follows: $X\left(z_{1}\right)=$ $\left\{x_{i}^{\prime} \in R: z_{1}=x_{i}^{\prime}+y_{i}^{\prime}\right.$ for some $y_{i}^{\prime} \in R$ such that $A^{L}\left(x_{i}^{\prime}\right) \leq B^{L}\left(y_{i}^{\prime}\right)$ and $\left.A^{U}\left(x_{i}^{\prime}\right) \leq B^{U}\left(y_{i}^{\prime}\right)\right\}$,
$Y\left(z_{1}\right)=\left\{y_{i}^{\prime} \in R: z_{1}=x_{i}^{\prime}+y_{i}^{\prime}\right.$ for some $x_{i}^{\prime} \in R$ such that $A^{L}\left(x_{i}^{\prime}\right) \geq$ $B^{L}\left(y_{i}^{\prime}\right)$ and $\left.A^{U}\left(x_{i}^{\prime}\right) \geq B^{U}\left(y_{i}^{\prime}\right)\right\}$. Then

$$
\begin{aligned}
\bigvee_{z_{1}=x_{i}^{\prime}+y_{i}^{\prime}}\left(A^{L}\left(x_{i}^{\prime}\right) \wedge B^{L}\left(y_{i}^{\prime}\right)\right)= & \left(\underset{x_{i}^{\prime} \in X\left(z_{1}\right)}{\bigvee}\left(A^{L}\left(x_{i}^{\prime}\right) \wedge B^{L}\left(y_{i}^{\prime}\right)\right)\right) \vee\left(\underset { x _ { i } ^ { \prime } \in X (z _ { 1 }) } { } \left(A^{L}\left(x_{i}^{\prime}\right) \wedge\right.\right. \\
& \left.\left.B^{L}\left(y_{i}^{\prime}\right)\right)\right)(\operatorname{As} \text { in Lemma } 2.13) \\
= & \left(\bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)}\left(A^{L}\left(x_{i}^{\prime}\right)\right)\right) \vee\left(\bigvee_{y_{i}^{\prime} \in Y\left(z_{1}\right)}\left(B^{L}\left(y_{i}^{\prime}\right)\right)\right) .
\end{aligned}
$$

By the similar arguments, we have that

$$
\bigvee_{z_{1}=x_{i}^{\prime}+y_{i}^{\prime}}\left(A^{U}\left(x_{i}^{\prime}\right) \wedge B^{U}\left(y_{i}^{\prime}\right)\right)=\left(\bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)}\left(A^{U}\left(x_{i}^{\prime}\right)\right)\right) \vee\left(\bigvee_{y_{i}^{\prime} \in Y\left(z_{1}\right)}\left(B^{U}\left(y_{i}^{\prime}\right)\right)\right)
$$

Since $X\left(z_{1}\right) \subset X(S)$ and $x_{i}^{\prime} \in X\left(z_{1}\right)$,

$$
A^{L}\left(x^{\prime}\right) \leq \bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)} A^{L}\left(x_{i}^{\prime}\right) \leq \bigvee_{x \in X(S)} A^{L}(x)=A^{L}\left(x_{i}^{\prime}\right)
$$

and

$$
A^{U}\left(x^{\prime}\right) \geq \bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)} A^{U}\left(x_{i}^{\prime}\right) \geq \bigvee_{x \in X(S)} A^{U}(x)=A^{U}\left(x_{i}^{\prime}\right)
$$

Thus $\bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)} A^{L}\left(x_{i}^{\prime}\right)=A^{L}\left(x_{i}^{\prime}\right)$ and $\bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)} A^{U}\left(x_{i}^{\prime}\right)=A^{U}\left(x_{i}^{\prime}\right)$. Also, since $Y\left(z_{1}\right) \subset Y(S)$ and $y^{\prime \prime} \in Y\left(z_{1}\right)$, we have

$$
\bigvee_{y_{i}^{\prime} \in Y\left(z_{1}\right)} B^{L}\left(y_{i}^{\prime}\right)=B^{L}\left(y_{i}^{\prime \prime}\right) \text { and } \bigvee_{y_{i}^{\prime} \in Y\left(z_{1}\right)} B^{U}\left(y_{i}^{\prime}\right)=B^{U}\left(x_{i}^{\prime \prime}\right) .
$$

By the hypothesis,

$$
\bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)} A^{L}\left(x_{i}^{\prime}\right)=A^{L}\left(x_{i}^{\prime}\right) \geq B^{L}\left(y_{i}^{\prime \prime}\right)=\bigvee_{y_{i}^{\prime} \in Y\left(z_{1}\right)} B^{L}\left(y_{i}^{\prime}\right)
$$

and

$$
\bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)} A^{U}\left(x_{i}^{\prime}\right)=A^{U}\left(x_{i}^{\prime}\right) \geq B^{U}\left(y_{i}^{\prime \prime}\right)=\bigvee_{y_{i}^{\prime} \in Y\left(z_{1}\right)} B^{U}\left(y_{i}^{\prime}\right) .
$$

Thus

$$
(A+B)^{L}=\left(\bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)} A^{L}\left(x_{i}^{\prime}\right)\right) \vee\left(\bigvee_{y_{i}^{\prime} \in Y\left(z_{1}\right)} B^{L}\left(y_{i}^{\prime}\right)\right)=A^{L}\left(x^{\prime}\right)
$$

and

$$
(A+B)^{U}=\left(\bigvee_{x_{i}^{\prime} \in X\left(z_{1}\right)} A^{U}\left(x_{i}^{\prime}\right)\right) \vee\left(\bigvee_{y_{i}^{\prime} \in Y\left(z_{1}\right)} B^{U}\left(y_{i}^{\prime}\right)\right)=A^{U}\left(x^{\prime}\right) .
$$

So, by (2.8) and (2.9),
$\bigvee_{z \in S}(A+B)^{L}(z)=(A+B)^{L}\left(z_{1}\right)$ and $\bigvee_{z \in S}(A+B)^{U}(z)=(A+B)^{U}\left(z_{1}\right)$.

Case (ii): Suppose $A^{L}\left(x^{\prime}\right) \leq B^{L}\left(y^{\prime \prime}\right)$ and $A^{U}\left(x^{\prime}\right) \leq B^{U}\left(y^{\prime \prime}\right)$. By proceeding in a similar way as in Case (i), we can verify that

$$
\bigvee_{z \in S}(A+B)^{L}(z)=(A+B)^{L}\left(z_{2}\right) \text { and } \bigvee_{z \in S}(A+B)^{U}(z)=(A+B)^{U}\left(z_{2}\right)
$$

for some $z_{2} \in S$. Hence, in all, $A+B$ has the sup-property.
(b) The proof is left as an exercise for the reader. This completes the proof.

Proposition 2.20. Let $\operatorname{IVIs}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ be the set of all IVIs with the sup-property and same tip " $\left[\lambda_{0}, \mu_{0}\right]$ ". Then $\operatorname{IVIs}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ forms a sublattice of $\operatorname{IVI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ and hence of $\operatorname{IVI}(\mathrm{R})$.

Proof. Let $A, B \in \operatorname{IVIs}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$. We show that $A \vee B=A+B$. Since $A, B \in \operatorname{IVI}(\mathrm{R})$, by Lemma 2.13, $A_{[\lambda, \mu]}$ and $B_{[\lambda, \mu]}$ are ideals for each $[\lambda, \mu] \in D(I)$ with $\lambda \leq(A+B)^{L}(0)=\lambda_{0} \mu \leq(A+B)^{U}(0)=\mu_{0}$. Then $A_{[\lambda, \mu]}+B_{[\lambda, \mu]}$ is an ideal of R. Since A and B have the sup-property, by Lemma 2.13, $A_{[\lambda, \mu]}+B_{[\lambda, \mu]}=(A+B)_{[\lambda, \mu]}$. Thus $(A+B)_{[\lambda, \mu]}$ is an ideal of R. So, by Theorem 2.12, $A+B \in \operatorname{IVI}(\mathrm{R})$. Since A and B have the same tip " $\left[\lambda_{0}, \mu_{0}\right]$ ", we have

$$
(A+B)^{L}(z)=\left(\bigvee_{z=x+y} A^{L}(x) \wedge B^{L}(y) \geq A^{L}(z) \wedge B^{L}(0)=A^{L}(z)\right.
$$

and

$$
(A+B)^{U}(z)=\left(\bigvee_{z=x+y} A^{U}(x) \wedge B^{U}(y) \geq A^{U}(z) \wedge B^{U}(0)=A^{U}(z)\right.
$$

for each $z \in S$. Then $A \subset A+B$. By the similar arguments, we have $B \subset A+B$.

Now let $C \in \operatorname{IVI}(\mathrm{R})$ contain A and B and let $z \in S$ such that $z=x+y$. Then
$C^{L}(z)=C^{L}(x+y) \geq C^{L}(x) \wedge C^{L}(y)$ and $C^{U}(z)=C^{U}(x+y) \geq C^{U}(x) \wedge C^{U}(y)$.
Thus

$$
\begin{aligned}
(A+B)^{L}(z) & =\bigvee_{z=x+y}\left(A^{L}(x) \wedge B^{L}(y)\right) \\
& \leq \bigvee_{z=x+y}\left(C^{L}(x) \wedge C^{L}(y)\right)(\text { Since } A \subset C \text { and } B \subset C) \\
& =C^{L}(z)
\end{aligned}
$$

Similarly, we have that $(A+B)^{U}(z) \leq C^{U}(z)$. So $A+B \subset C$. Hence $A+B$ is the least interval-valued fuzzy ideal containing A and B. Therefore $A+B=A \vee B$. On the other hand, by Lemma 2.19(a), $A \vee B$ has the sup-property. Thus $A \vee B \in \operatorname{IVIs}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$. So $\mathrm{IVIs}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ forms a sublattice of $\operatorname{IVI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ and hence of $\operatorname{IVI}(\mathrm{R})$. This completes the proof.

The following lattice diagram is the interrelationship of different sublattices of the lattice $\operatorname{IVR}(\mathrm{R})$:

Figure 1

Now we obtain an interval-valued fuzzy analog of a well-known result that the set of ideals of a ring forms a modular lattice.

3. Interval-valued fuzzy ideals and modularity

In the previous section, we discussed various sublattices of the lattice of interval-valued fuzzy ideals of a ring. Hence, we obtain an intervalvalued fuzzy analog of a well known result that the set of ideals of a ring forms a modular lattice.

Lemma 3.1. Let $A \in \operatorname{IVR}(\mathrm{R})$. If $A^{L}(x)<A^{L}(y)$ and $A^{U}(x)<A^{U}(y)$ for some $x, y \in R$, then $A(x+y)=A(x)$.

Proof. Since $A \in \operatorname{IVR}(\mathrm{R})$,

$$
A^{L}(x+y) \geq A^{L}(x) \wedge A^{L}(y)=A^{L}(x)
$$

and

$$
A^{U}(x+y) \geq A^{U}(x) \wedge A^{U}(y)=A^{U}(x) .
$$

Assume that $A^{L}(x+y)>A^{L}(x)$ and $A^{U}(x+y)>A^{U}(x)$. Then

$$
A^{L}(x)=A^{L}(y+x-y) \geq A^{L}(x+y) \wedge A^{L}(y)>A^{L}(x)
$$

and

$$
A^{U}(x)=A^{U}(y+x-y) \geq A^{U}(x+y) \wedge A^{U}(y)>A^{U}(x) .
$$

This contradicts the fact that $A(x)=A(x)$. Hence $A(x+y)=A(x)$.
Proposition 3.2. The sublattice $\mathrm{IVI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ is modular.
Proof. Since the modular inequality is valid for every lattice, for any $A, B, C \in \operatorname{IVIs}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ with $B \subset A$, we have that $B \vee(A \wedge C) \subset$ $A \wedge(B \vee C)$.
Assume that $A \wedge(B \vee C) \neq B \vee(A \wedge C)$. Then there exists $z \in R$ such that

$$
(A \wedge(B \vee C))^{L}(z)>(B \vee(A \wedge C))^{L}(z)
$$

and

$$
(A \wedge(B \vee C))^{U}(z)>(B \vee(A \wedge C))^{U}(z)
$$

Thus, by Proposition 2.20,

$$
A^{L}(z) \wedge(B+C)^{L}(z)>(B+(A \cap C))^{L}(z)
$$

and

$$
A^{U}(z) \wedge(B+C)^{U}(z)>(B+(A \cap C))^{U}(z)
$$

So

$$
\begin{equation*}
A^{L}(z)>(B+(A \cap C))^{L}(z), A^{U}(z)>(B+(A \cap C))^{U}(z) \tag{3.1}
\end{equation*}
$$

and

$$
(B+C)^{L}(z)>(B+(A \cap C))^{L}(z),(B+C)^{U}(z)>(B+(A \cap C))^{U}(z) .
$$

Then there exist $x_{0}, y_{0} \in R$ with $z=x_{0}+y_{0}$ such that

$$
B^{L}\left(x_{0}\right) \wedge C^{L}\left(y_{0}\right)>\left(B+(A \cap C)^{L}(z)\right.
$$

and

$$
B^{U}\left(x_{0}\right) \wedge C^{U}\left(y_{0}\right)>\left(B+(A \cap C)^{U}(z) .\right.
$$

Thus

$$
\begin{equation*}
B^{L}\left(x_{0}\right)>(B+(A \cap C))^{L}(z), B^{U}\left(x_{0}\right)>(B+(A \cap C))^{U}(z) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{L}\left(y_{0}\right)>(B+(A \cap C))^{L}(z), C^{U}\left(y_{0}\right)>(B+(A \cap C))^{U}(z) \tag{3.3}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
(B+(A \cap C))^{L}(z) & \left.=\bigvee_{z=x+y}\left(B^{L}(x) \wedge(A \cap C)^{L}(y)\right)\right) \\
& \geq\left(B^{L}\left(x_{0}\right) \wedge(A \cap C)^{L}\left(y_{0}\right)\right) \\
& =B^{L}\left(x_{0}\right) \wedge A^{L}\left(y_{0}\right) \wedge C^{L}\left(y_{0}\right)
\end{aligned}
$$

Similarly, we have that $(B+(A \cap C))^{U}(z) \geq B^{U}\left(x_{0}\right) \wedge A^{U}\left(y_{0}\right) \wedge C^{U}\left(y_{0}\right)$. Then, by (3.1),(3.2),(3.3),

$$
A^{L}(z), B^{L}\left(x_{0}\right), C^{L}\left(y_{0}\right)>B^{L}\left(x_{0}\right) \wedge A^{L}\left(y_{0}\right) \wedge C^{L}\left(y_{0}\right)
$$

and

$$
A^{U}(z), B^{U}\left(x_{0}\right), C^{U}\left(y_{0}\right)>B^{U}\left(x_{0}\right) \wedge A^{U}\left(y_{0}\right) \wedge C^{U}\left(y_{0}\right)
$$

Thus

$$
B^{L}\left(x_{0}\right) \wedge A^{L}\left(y_{0}\right) \wedge C^{L}\left(y_{0}\right)=A^{L}\left(y_{0}\right)
$$

and

$$
B^{U}\left(x_{0}\right) \wedge A^{U}\left(y_{0}\right) \wedge C^{U}\left(y_{0}\right)=A^{U}\left(y_{0}\right)
$$

So

$$
A^{L}\left(-y_{0}\right)=A^{L}\left(y_{0}\right)<A^{L}\left(x_{0}+y_{0}\right)=A^{L}(z)
$$

and

$$
A^{U}\left(-y_{0}\right)=A^{U}\left(y_{0}\right)<A^{U}\left(x_{0}+y_{0}\right)=A^{U}(z)
$$

By Lemma 3.1,

$$
A^{L}\left(y_{0}\right)=A^{L}\left(x_{0}+y_{0}-y_{0}\right)=A^{L}\left(x_{0}\right)
$$

and

$$
A^{U}\left(y_{0}\right)=A^{U}\left(x_{0}+y_{0}-y_{0}\right)=A^{U}\left(x_{0}\right)
$$

Then

$$
B^{L}\left(x_{0}\right)>A^{L}\left(y_{0}\right)=A^{L}\left(x_{0}\right)
$$

and

$$
B^{U}\left(x_{0}\right)>A^{U}\left(y_{0}\right)=A^{U}\left(x_{0}\right)
$$

This contradicts the fact that $B \subset A$. Hence $A \wedge(B \vee C)=B \vee(A \wedge C)$. Therefore $\operatorname{IVIs}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ is modular. This completes the proof.

Remark 3.3. As a special case, $\operatorname{IVI}_{[1,1]}(R)$ is a complete sublattice of $\operatorname{IVI}(\mathrm{R})$ and $\operatorname{IVIs}_{[1,1]}(R)$ is a modular sublattice of $\operatorname{IVI}(\mathrm{R})$.

Proposition 3.4. (The generalization of Proposition 3.2) $\operatorname{IVLI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$, $\operatorname{IVRI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ and $\operatorname{IVI}_{\left[\lambda_{0}, \mu_{0}\right]}(R)$ are all modular.

Proof. The proofs are similar to Proposition 3.2.
Proposition 3.5. IVI (R) is bounded.

Proof. It is clear that $\mathbf{0} \in \operatorname{IVI}(\mathrm{R})$ and $\mathbf{1} \in \mathrm{IVI}(\mathrm{R})$. Moreover, $\mathbf{0} \subset A \subset \mathbf{1}$ for each $A \in \operatorname{IVI}(\mathrm{R})$. Hence $\operatorname{IVI}(\mathrm{R})$ is bounded.

Proposition 3.6. (a) $\operatorname{IVI}(\mathrm{R})$ is not complemented.
(b) $\operatorname{IVI}(\mathrm{R})$ has no atoms.
(c) $\operatorname{IVI}(\mathrm{R})$ has no dual atoms.

Proof. (a) We define a mapping $A: R \rightarrow D(I)$ as follows: For each $x \in R, A(x)=\left[\frac{1}{2}, \frac{1}{2}\right]$. Then clearly $\left[A, A^{c}\right] \in \operatorname{IVI}(\mathrm{R})$. But $A \cup A^{c} \neq \tilde{1}$ and $A \cap A^{c} \neq \tilde{0}$. Thus A has no complement in $\operatorname{IVI}(\mathrm{R})$. Hence $\operatorname{IVI}(\mathrm{R})$ is not complemented.
(b) Suppose $A \in \operatorname{IVI}(\mathrm{R})$ with $A \neq \tilde{0}$. We define a mapping B : $R \rightarrow D(I)$ as follows: For each $x \in R, B^{L}(x)=\frac{1}{2} A^{L}(x)$ and $B^{U}(x)=$ $\frac{1}{2} A^{U}(x)$. Then clearly $B \in \operatorname{IVI}(\mathrm{R})$. Moreover, $\tilde{0} \varsubsetneqq B \varsubsetneqq A$. Hence $\operatorname{IVI}(\mathrm{R})$ has no atoms.
(c) Suppose $A \in \operatorname{IVI}(\mathrm{R})$ with $A \neq \tilde{1}$. We define a mapping $B: R \rightarrow$ $D(I)$ as follows: For each $x \in R$,

$$
B^{L}(x)=\frac{1}{2}+\frac{1}{2} A^{L}(x) \text { and } B^{U}(x)=\frac{1}{2}+\frac{1}{2} A^{U}(x) .
$$

Then clearly $A \varsubsetneqq B \varsubsetneqq \tilde{1}$.

Now let $x, y \in R$. Then

$$
\begin{aligned}
B^{L}(x y) & =\frac{1}{2}+\frac{1}{2} A^{L}(x y) \\
& \geq \frac{1}{2}+\frac{1}{2}\left(A^{L}(x) \vee A^{L}(y)(\text { Since } A \in \operatorname{IVI}(\mathrm{R}))\right. \\
& =\left(\frac{1}{2}+\frac{1}{2} A^{L}(x)\right) \vee\left(\frac{1}{2}+\frac{1}{2} A^{L}(y)\right) \\
& =B^{L}(x) \vee B^{L}(y)
\end{aligned}
$$

By the similar arguments, we have that $B^{U}(x y) \geq B^{U}(x) \vee B^{U}(y)$. Also,

$$
\begin{aligned}
B^{L}(x-y) & =\frac{1}{2}+\frac{1}{2} A^{L}(x-y) \\
& \geq \frac{1}{2}+\frac{1}{2}\left(A^{L}(x) \wedge A^{L}(y)(\text { Since } A \in \operatorname{IVI}(\mathrm{R}))\right. \\
& =\left(\frac{1}{2}+\frac{1}{2} A^{L}(x)\right) \wedge\left(\frac{1}{2}+\frac{1}{2} A^{L}(y)\right) \\
& =B^{L}(x) \wedge B^{L}(y)
\end{aligned}
$$

By the similar arguments, we have that $B^{U}(x-y) \geq B^{U}(x) \wedge B^{U}(y)$. So $B \in \operatorname{IVI}(\mathrm{R})$. Hence $\operatorname{IVI}(\mathrm{R})$ has no dual atoms.

References

[1] G.Birkoff, Lattice Theory, A.M.S. Colliquium Publication Vol.XXV(1967).
[2] R.Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy set and systems 63(1995) 87-90.
[3] M.Cheong and K.Hur, Interval-valued fuzzy ideals and bi-ideals of a semigroup, Honam Math.J.33(4)(2011).
[4] J.Y.Choi, S.R.Kim and K.Hur, Interval-valued smooth topological spaces, Honam Math.J.32(4)(2010), 711-738.
[5] H.W.Kang and K.Hur, Interval-valued fuzzy subgroups and rings, Honam. Math. J. 32.(4)(2010), 593-617
[6] T.K.Mondal and S.K.Samanta, Topology of interval-valued fuzzy sets, Indian J.Pure Appl.Math.30(1)(1999)20-38
[7] L.A.Zadeh, Fuzzy sets, Inform and Control 8, 338-353, 1965.
[8] L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inform.Sci 8(1975) 199-249

Keon Chang Lee

Department of Computer Science, Dongshin University,

Naju 520-714, Korea.
E-mail: kclee@dsu.ac.kr

Kul Hur
Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan 570-749, Korea.
E-mail: kulhur@wonkwang.ac.kr

Pyung Ki Lim
Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan 570-749, Korea.
E-mail: pklim@wonkwang.ac.kr

[^0]: Received May 24, 2012. Accepted August 1, 2012.
 2000 Mathematics Subject Classification. 03F55, 06C05, 16D25.
 Key words and phrases. Lattice, modularity, interval-valued fuzzy subring, interval-valued fuzzy left(right)ideal, (strong) level subset.

 * Corresponding Author

 This paper was supported by Wonkwang University in 2012.

