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CONSTRUCTIVE APPROXIMATION BY GAUSSIAN

NEURAL NETWORKS
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†
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Abstract. In this paper, we discuss a constructive approximation
by Gaussian neural networks. We show that it is possible to con-
struct Gaussian neural networks with integer weights that approx-
imate arbitrarily well for functions in Cc(R

s). We demonstrate
numerical experiments to support our theoretical results.

1. Introduction

In recent years, a great deal of research in the theory and the appli-
cation of neural networks has been done by many researchers ([1], [2],
[3], [4], [7], [10]).

Neural networks estimate functions that are linear combinations of
activation functions composed of affine functionals. The following func-
tions are typically used as an activation function.

σ(x) =

{

1 if x ≥ 0

0 if x < 0
(The Heaviside function)

σ(x) = 1/(1 + e−x) (The squashing function).

Note that the Heaviside function and the squashing function are sig-
moidal functions.

Definition 1.1. A sigmoidal function is a function σ : R → R such

that

lim
t→∞

σ(t) = 1 and lim
t→−∞

σ(t) = 0.

Received May 21, 2012. Accepted June 5, 2012.
2000 Mathematics Subject Classification. 41A25, 41A46, 42A85.
Key words and phrases. Constructive Approximation, Neural Network, Gaussian

Activation Function.
† This research was supported by the University of Incheon Research Fund, 2011.
‡ Corresponding author.



342 Nahmwoo Hahm and Bum Il Hong

We basically investigate the approximation by a neural network with
one hidden layer. This neural network has an input layer, a hidden layer
and an output layer. A neural network with one hidden layer is of the
form

(1.1)
∑

1≤i≤n

piσ(qix+ ri)

where σ is an activation function, pi, qi ∈ R, and x, ri ∈ R
s. Note that

q′is and ri
′s are called weights and thresholds, respectively.

Chen [2] and Hahm and Hong [6] showed approximation orders to
functions in C[0, 1] and C̄(R) by neural networks with a sigmoidal ac-
tivation function, respectively. Although their proofs are constructive,
the approximation algorithms in [2] and [6] are not applicable in C[0, 1]s

and C̄(Rs) when s ≥ 2 is an integer. In addition, we are not able to
use the constructive proofs in [2] and [6] if the activation function in a
neural network is not a sigmoidal function.

Recently, some researchers showed the importance of Gaussian neural
networks. Beheral, Gopal and Chaudhury [1] used Gaussian neural net-
works for robot tracking applications to model both the forward and the
inverse dynamics of a robot arm. Firmin, Hamand, Postaire and Zhang
[4] showed the efficiency of Gaussian neural networks to fault detection
in glass bottle inspection. Hartman, Keeler and Kowalski [5] theoreti-
cally proved that neural network with a single layer of hidden units of
gaussian type is a universal approximator for real-valued functions on
convex and compact sets of Rs but their proofs are not constructive.
Theoretically, Mhaskar [9] showed an approximation order to functions
in Sobolev space by neural networks with a Gaussian activation function
but Mhaskar did not suggest explicit weights and thresholds.

In this research, we suggest explicit weights and thresholds of Gauss-
ian neural networks and demonstrate numerical experiments to make
our theoretical results strong and solid.

2. Preliminaries

Let s be a natural number. For x = (x1, . . . , xs), y = (y1, . . . , ys) ∈
R
s and c ∈ R, we write x + y = (x1 + y1, x2 + y2, . . . , xs + ys) and

cx = (cx1, cx2, . . . , cxs). For i = (i1, i2, . . . , is) ∈ N
s, we define 1 ≤ i ≤ n

by 1 ≤ i1, i2, . . . , is ≤ n and denote a point bi = (bi1 , bi2 , . . . , bis) ∈ R
s.
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In addition, we define ‖x‖ := ‖x‖2 = (
∑s

i=1 |xi|2)1/2. For a function f
defined on A ⊂ R

s, we define

‖f‖∞,A := sup{|f(x)| : x ∈ A}.
We denote by Cc(R

s) the set of all continuous functions that have com-
pact supports. Note that

σ(x) =
1

(
√
2π)s

e−‖x‖2

is the Gaussian function on R
s and has the following property.

∫

Rs

1

(
√
2π)s

e−‖x‖2dx

=
1

(
√
2π)s

∫

R

· · ·
∫

R

e−x1
2 · · · e−xs

2

dx1 · · · dxs(2.1)

= 1.

For a positive real number p, we define σp(x) = psσ(px) for x ∈ R
s.

Then, by integration by substitution,

(2.2)

∫

Rs

σp(x)dx =

∫

Rs

psσ(px)dx =

∫

Rs

σ(x)dx = 1.

Let ǫ > 0 be given. Since σ ∈ L1(Rs), there exists B ⊂ R
s such that

(2.3)

∫

Rs−B
σ(x)dx < ǫ.

If f, g ∈ C(Rs) with supp(f) ⊂ [−a, a]s for some positive real number a,
then the convolution of f and g is defined by

(f ∗ g)(x) =
∫

Rs

f(x− y)g(y)dy.

Note that (f ∗ g)(x) = (g ∗ f)(x) for any x ∈ R
s.

3. Main Results

In the neural network approximation, researchers first use polynomi-
als to approximate target functions and then approximate polynomials
by neural networks. In this paper, we use a convolution method [8] in
order to obtain explicit coefficients, weights and thresholds.
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Theorem 3.1. Let σ be the Gaussian function and let σm(x) =
msσ(mx) for m ∈ N and x ∈ R

s. For f ∈ Cc(R
s) and ǫ > 0, there

exists m0 ∈ N such that

‖f − f ∗ σm0
‖∞,Rs < ǫ.

Proof. By (2.2), we get

|f(x)− (f ∗ σm)(x)| = |f(x)−
∫

Rs

f(y − x)σm(y)dy|

=
∣

∣

∣

∫

Rs

(

f(x)− f(y − x)
)

σm(y)dy
∣

∣

∣

≤
∫

Rs

∣

∣f(x)− f(y − x)
∣

∣σm(y)dy.(3.1)

Let ǫ > 0 be given. Note that f is uniformly continuous on R
s since

f ∈ Cc(R
s). Hence, there exists δ > 0 such that for any y ∈ R

s with
‖y‖ < δ,

(3.2) |f(x)− f(y − x)| < ǫ

2
.

In order to apply (3.2) to (3.1), we rewrite the last part of (3.1) as
∫

Rs

∣

∣f(x)− f(y − x)
∣

∣σm(y)dy

=

∫

{y∈Rs:‖y‖<δ}

∣

∣f(x)− f(y− x)
∣

∣σm(y)dy(3.3)

+

∫

Rs−{y∈Rs:‖y‖<δ}

∣

∣f(x)− f(y− x)
∣

∣σm(y)dy.

From (2.2) and (3.2), the first part of (3.3) yields that
∫

{y∈Rs:‖y‖<δ}

∣

∣f(x)− f(y − x)
∣

∣σm(y)dy

<
ǫ

2

∫

Rs

σm(y)dy(3.4)

=
ǫ

2
.

Note that (3.4) holds for any m ∈ N.
Since f ∈ Cc(R

s), it is clear that f ∈ L1(Rs). By (2.3), there exists
m0 ∈ N such that

(3.5)

∫

Rs−{x∈Rs:‖x‖<m0δ}
σ(x)dx <

ǫ

4‖f‖∞,Rs

.
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Hence, the second part of (3.3) yields that
∫

Rs−{y∈Rs:‖y‖<δ}

∣

∣f(x)− f(y − x)
∣

∣σm0
(y)dy

≤ 2‖f‖∞
∫

Rs−{y∈Rs:‖y‖<m0δ}
σ(y)dy(3.6)

<
ǫ

2
.

Therefore, the combination of (3.4) and (3.6) gives

‖f − f ∗ σm0
‖∞,Rs < ǫ.

Thus, we complete the proof.

Now, we approximate f ∗ σm0
by a Gaussian neural network. In the

proof, we use the Riemann sum for integral.

Theorem 3.2. Assume that f ∈ Cc(R
s). Then for a given m ∈ N

and ǫ > 0, there exists a neural network

(3.7) Nm,n,s =
∑

1≤i≤n

ciσ(mx+ bi)

such that

(3.8) ‖f ∗ σm −Nm,n,s‖∞,Rs < ǫ,

where ci ∈ R and x,bi ∈ R
s for 1 ≤ i ≤ n.

Proof. Since f ∈ Cc(R
s), we may assume that supp(f) ⊂ [−a, a]s for

some positive real number a. Then the support of f ∗ σm is a subset of
[−2a, 2a]s. Hence,

(f ∗ σm)(x) =

∫

Rs

σm(y)f(x − y)dy

=

∫

[−2a,2a]s
σm(y)f(x− y)dy(3.9)

=

∫

[−2a,2a]s
σm(x− y)f(y)dy.

For n ∈ N and i = (i1, i2, . . . , is) ∈ N
s with 1 ≤ i ≤ n, we set

ai = (−2a+ 4a
i1
n
,−2a+ 4a

i2
n
, . . . ,−2a+ 4a

is
n
).

Note that the set {ai = (−2a + 4a i1
n ,−2a + 4a i2

n , . . . ,−2a+ 4a is
n ) ∈

R
s : 1 ≤ i ≤ n} is the collection of all grid points of [−2a, 2a]s that does
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not contain any point on each axis xj = −2a for 1 ≤ j ≤ s. Therefore,
the total number of grid points of [−2a, 2a]s we use is ns. Then

(3.10) Nm,n,s(x) :=
∑

1≤i≤n

f(ai)(
4a

n
)sσ(mx−mai)

denotes the Riemann sum of f ∗ σm on [−2a, 2a]s. Hence,

lim
n→∞

Nm,n,s(x) = (f ∗ σm)(x)

for all x ∈ [−2a, 2a]s. By the construction, we can easily see that (f ∗
σm)(x) = 0 and Nm,n,s(x) = 0 for x ∈ R

s − [−2a, 2a]s. Therefore, for a
given ǫ > 0 and m ∈ N, there exists n ∈ N such that

‖f ∗ σm −Nm,n,s‖∞,Rs = ‖f ∗ σm −Nm,n,s‖∞,[−2a,2a]s < ǫ.

From Theorem 3.1 and Theorem 3.2, we obtain the following that is
the main theorem of this paper.

Theorem 3.3. If f ∈ Cc(R
s) and σ is the Gaussian function, then

for a given ǫ > 0, there exists a neural network

(3.11) Nm,n,s =
∑

1≤i≤n

ciσ(mx+ bi)

such that

(3.12) ‖f −Nm,n,s‖∞,Rs < ǫ,

where ci ∈ R and x,bi ∈ R
s for 1 ≤ i ≤ n.

Proof. By Theorem 3.1, there exists m ∈ N such that

(3.13) ‖f − f ∗ σm‖∞,Rs <
ǫ

2
.

And by Theorem 3.2, there exists a neural network Nm,n,s such that

(3.14) ‖f ∗ σm −Nm,n,s‖∞,Rs <
ǫ

2
.

Therefore, we have

‖f −Nm,n,s‖∞,Rs

≤ ‖f − f ∗ σm‖∞,Rs + ‖f ∗ σm −Nm,n,s‖∞,Rs(3.15)

< ǫ.

This completes the proof.
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4. Numerical Results and Conclusion

Now, we demonstrate numerical data implemented by MATHEMAT-
ICA in order to justify our theory. We select

f(x) =

{

cos x if − π

2
≤ x ≤ π

2
0 if otherwise

as a target function. We choose σ4 and σ10 for convolution and test the
approximation of f by f ∗ σ4 and f ∗ σ10, respectively. The results are
the followings.
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Figure 1. The target function and f ∗ σ4.
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Figure 2. The target function and f ∗ σ10.

As seen in Figure 1 and Figure 2, f ∗ σ10 approximates f well on R.
In fact, numerical computation shows that ‖f − f ∗ σ4‖∞,R = 0.084171
and ‖f − f ∗ σ10‖∞,R = 0.013713.

We then test the approximation of f ∗ σ10 by N20,10,1 and N40,10,1,
respectively. The results are the followings.
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Figure 3. f ∗ σ10 and neural network N20,20,1.
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Figure 4. f ∗ σ10 and neural network N40,20,1.

Figure 3 and Figure 4 show that N40,10,1 approximates f ∗σ10 well on
R. In fact, numerical computation shows that ‖f ∗ σ10 −N20,10,1‖∞,R =
0.275447 and ‖f ∗ σ10 −N40,20,1‖∞,R = 0.00908.

From these results, we choose a Gaussian neural network N40,20,1 to
approximate f on R.
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Figure 5. The target function and neural network N40,20,1.

Figure 5 shows that N40,10,1 approximates f very well on R and our
numerical computation gives ‖f −N20,10,1‖∞,R = 0.017826.

In this research, we have demonstrated the density result for the
compact supported continuous functions by neural networks with the
Gaussian activation function. Using the convolution method and the
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Riemann sum, we have suggested explicit weights and thresholds for
neural network approximation, and have obtained the constructive proof
for the multivariate functions unlike [2] and [6] in addition.
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