References
- J. Choe and R. Gulliver, Embedded minimal surfaces and total curvature of curves in a manifold, Math. Res. Lett. 10 (2003), no. 2-3, 343-362. https://doi.org/10.4310/MRL.2003.v10.n3.a5
-
B. Daniel, Isometric immersions into
$S^{n}{\times}R\;and\;H^{n}{\times}R$ and applications to minimal surfaces, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6255-6282. https://doi.org/10.1090/S0002-9947-09-04555-3 - L. Hauswirth, Minimal surfaces of Riemann type in three-dimensional product manifolds, Pacific J. Math. 224 (2006), no. 1, 91-117. https://doi.org/10.2140/pjm.2006.224.91
-
L. Hauswirth, R. Sa Earp, and E. Toubiana, Associate and conjugate minimal immersions in M
${\times}$ R, Tohoku Math. J. (2) 60 (2008), no. 2, 267-286. https://doi.org/10.2748/tmj/1215442875 - D. Joyce, Tiling the hyperbolic plane, http://aleph0.clarku.edu/djoyce.
- H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988), no. 1, 83-114. https://doi.org/10.1007/BF01258269
-
Y. Kim, S. Koh, H. Shin, and S. Yang, Helicoids in
$S^{2}{\times}R\;and\;H^{2}{\times}R$ , Pacific J. Math. 242 (2009), no. 2, 281-297. https://doi.org/10.2140/pjm.2009.242.281 -
F. Morabito and M. Rodriguez, Saddle tower in
$H^{2}{\times}R$ , to appear Journal de l'Institut de Mathematiques de Jussieu. - C. B. Morrey, The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49 (1948), 807-851. https://doi.org/10.2307/1969401
-
B. Nelli and H. Rosenberg, Minimal surfaces in
$H^{2}{\times}R$ , Bull. Braz. Math. Soc. (N.S.) 33 (2002), no. 2, 263-292. https://doi.org/10.1007/s005740200013 -
J. Pyo, New complete embedded minimal surfaces in
$H^{2}{\times}R$ , Ann. Global Anal. Geom. 40 (2011), no. 2, 167-176. https://doi.org/10.1007/s10455-011-9251-7 -
H. Rosenberg, Minimal surfaces in
$M^{2}{\times}R$ , Illinois J. Math. 46 (2002), no. 4, 1177-1195. -
R. Sa Earp and E. Toubiana, Screw motion surfaces in
$H^{2}{\times}R$ and$S^{2}{\times}R$ , Illinois J. Math. 49 (2005), no. 4, 1323-1362. - R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791-809. https://doi.org/10.4310/jdg/1214438183
Cited by
- Minimal rotational surfaces in the product space ℚ𝜀2 × 𝕊1 vol.29, pp.08, 2018, https://doi.org/10.1142/S0129167X18500519