References
- A. H. A. Ali, G. A. Gardner, L. R. T. Gardner, A collocation solution for Burgers' equation using cubic B-spline finite elements, Comput. Methods Appl. Mech. Engrg., 100(1992), 325-337. https://doi.org/10.1016/0045-7825(92)90088-2
- A. R. Bahadir, A fully implicit finite-difference scheme for two-dimensional Burgers' equations, Appl. Math. Comput., 137(2003), 131-137. https://doi.org/10.1016/S0096-3003(02)00091-7
- M. Berzins, Global error estimation in the methods of lines for parabolic equations, SIAM J. Sci. Statist. Comput., 19(4)(1988), 687-701.
- K. Black, A spectral element technique with a local spectral basis, SIAM J. Sci. Comput., 18(1997), 355-370. https://doi.org/10.1137/S1064827594268713
- D. T. Blackstock, Convergence of the Keck-Boyer perturbation solution for plane waves of finite amplitude in vicous fluid, J. Acoust. Soc. Am., 39(1966), 411-413. https://doi.org/10.1121/1.1909911
- N. Bressan, A. Quarteroni, An implicit/explicit spectral method for Burgers' equation, Calcolo, 23(1987), 265-284.
- J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1(1948), 171-199. https://doi.org/10.1016/S0065-2156(08)70100-5
- J. Caldwell, P. Wanless and A. E. Cook, A finite element approach to Burgers' equation, Appl. Math. Modelling, 5(1981), 189-193. https://doi.org/10.1016/0307-904X(81)90043-3
- C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin Heidelberg, 2006.
- H. Chen, Z. Jiang, A characteristics mixed finite element method for Burgers' equation, J. Appl. Math. Comput., 15(2004), 29-51. https://doi.org/10.1007/BF02935745
- I. Christie, A. R. Mitchell, Upwinding of high order Galerkin methods in conductionconvection problems, Int. J. Numer. Methods Eng., 12(1978), 1764-1771. https://doi.org/10.1002/nme.1620121113
- M. Ciment, S. H. Leventhal and B. C. Weinberg, The operator compact implicit method for parabolic equations, J. Comput. Phys., 28(1978), 135-166. https://doi.org/10.1016/0021-9991(78)90031-1
- J. D. Cole, On a quasi-linear parabolic equation occuring in aerodynamics, Quart. Appl. Math., IX, (1951), 225-236.
- G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3(1963), 27-43. https://doi.org/10.1007/BF01963532
- M. O. Deville, P. F. Fischer and E. H. Mund, High-order methods for incompressible fluid flow, Cambridge University Press, New York, 2002.
- I. A. Hassanien, A. A. Salama and H. A. Hosham Fourth-order finite difference method for solving Burgers' equation, Applied Math. and Comput., 170(2005), 781-800. https://doi.org/10.1016/j.amc.2004.12.052
- B. M. Herbst, S. W. Schoombie, D. F. Griffiths and A. R. Mitchell, Generalized Petrov-Galerkin methods for the numerical solution of Burgers' equation, Int. J. Numer. Methods Eng., 20(1984), 1273-1289. https://doi.org/10.1002/nme.1620200708
- R. S. Hirsh, Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys., 19(1975), 90-105. https://doi.org/10.1016/0021-9991(75)90118-7
- A. N. Hrymak, G. J. Mcrae and A. W. Westerberg, An implementation of a moving finite element method, J. Comput. Phys., 63(1986), 168-190. https://doi.org/10.1016/0021-9991(86)90090-2
- P. Z. Hunag, A. Abduwali, The modified local Crank-Nicolson method for one- and two-dimensional Burgers' equations, Compu. Math. Appl., 59(2010), 2452-2463. https://doi.org/10.1016/j.camwa.2009.08.069
- A. H. Khater, R. S. Temsah and M. M. Hassan, A Chebyshev spectral collocation method for solving Burgers'-type equations, J. Comput. Appl. Math., 222(2008), 333- 350. https://doi.org/10.1016/j.cam.2007.11.007
- P. Kim, X. Piao and S. Kim, An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J. Numer. Anal., 49(2011), 2211-2230. https://doi.org/10.1137/100808691
- S. Kutluay, A. R. Bahadir and A. Ozdes, Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, J. Comput. and Applied Math., 103(1999), 251-261. https://doi.org/10.1016/S0377-0427(98)00261-1
- S. Kutluay, A. Esen and I. Dag, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math., 167(2004), 21-33. https://doi.org/10.1016/j.cam.2003.09.043
- M. J. Lighthill, 'Viscosity Effects in Sound Waves of Finite Amplitude', In: Surveys in Mechanics, ed. by G.K. Bauchelor, R. Davies, Combridge Univ. Press, 1956.
- R. C. Mittal, R. Jiwari, Differential Quadrature Method for Two-Dimensional Burgers' equations, Int. J. Comput. Methods Eng. Sci. Mech., 10(2009), 450-459. https://doi.org/10.1080/15502280903111424
- A. R. Mitchell, D. F. Griffiths, The finite difference method in partial differential equations, John Wiley & Sons, New York, 1980.
- T. Ozis, E. N. Aksan and A. Ozdes, A finite element approach for solution of Burgers' equation, Applied Math. and Comput., 139(2003), 417-428. https://doi.org/10.1016/S0096-3003(02)00204-7
- H. Ramos, J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, J. Comput. Appl. Math., 204(2007), 124-136. https://doi.org/10.1016/j.cam.2006.04.033
- L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools 10, SIAM, Philadelphia, 2000.
- Y. Wu, X. H. Wu, Linearized and rational approximation method for solving nonlinear Burgers' equation, Int. J. Numer. Methods Fluids, 45(2004), 509-525. https://doi.org/10.1002/fld.714
- M. Xu, R. H. Wang, J. H. Zhang and Q. Fang, A novel numerical scheme for solving Burgers' equation, Applied Math. and Comput., 217(2011), 4473-4482. https://doi.org/10.1016/j.amc.2010.10.050
- L. Zhang, J. Ouyang, X. Wang and X. Zhang, Varational multiscale element-free Galerkin method for 2D Burgers' equation, J. Comput. Phys., 229(2010), 7147-7161. https://doi.org/10.1016/j.jcp.2010.06.004