DOI QR코드

DOI QR Code

The Low-Radiation Dosimetry Application of "tris" Lyoluminescence using Electron Paramagnetic Resonance at Low Temperature

  • Son, Phil-Kook (Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University) ;
  • Choi, Suk-Won (Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University) ;
  • Kim, Sung-Soo (Department of Chemical Engineering, Kyung Hee University) ;
  • Gwag, Jin-Seog (Department of Physics, Yeungnam University)
  • Received : 2012.04.05
  • Accepted : 2012.07.07
  • Published : 2012.09.30

Abstract

We present a method for detecting very weak radiation by analyzing the inner structure of irradiated tris (lyoluminescence) materials using electron paramagnetic resonance (EPR) at low temperature. Organic materials have been looked into for use in emergency dosimetry of inhabitants around radiation accidents. However, this technology has never been applied to imperceptible radiation doses (< 0.5 Gy) because there is no proper method for detecting the change of inner structure of the subject bombed by very weak radiation at room temperature. Our results show that tris materials can be applied as a radiation detectors of very small radiation doses below 0.05 Gray, if EPR is used at low temperature (130 K ${\leq}$ T ${\leq}$ 270 K). The EPR signal intensity from the irradiated-tris sample had barely faded at all after 1 year.

Keywords

References

  1. P. K. Son, C. I. Ok, and J. W. Kim, J. Korean Phys. Soc. 38, 315 (2001).
  2. P. K. Son, K. C. Heo, C. I. Ok, and J. W. Kim, J. Korean Phys. Soc. 39, 233 (2001).
  3. Fan Silveira and O. Baffa, Appl. Radiat. Isot. 46, 827 (1995). https://doi.org/10.1016/0969-8043(95)00016-7
  4. Toshiyuki Nakajima, Health Physics 55, 951 (1988). https://doi.org/10.1097/00004032-198812000-00010
  5. Toshiyuki Nakajima, Appl. Radiat. Isot. 46, 819 (1995). https://doi.org/10.1016/0969-8043(95)00024-8
  6. Toshiyuki Nakajima, and Toshiko Otsuki, Appl. Radiat. Isot. 41, 359 (1990). https://doi.org/10.1016/0883-2889(90)90144-6
  7. Toshiyuki Nakajima, Appl. Radiat. Isot. 45, 113 (1994). https://doi.org/10.1016/0969-8043(94)90156-2
  8. Juan Azorin, Alicia Gutierrez, Eduardo Munoz, and Roberto Gleason, Appl. Radiat. Isot. 40, 871 (1989). https://doi.org/10.1016/0883-2889(89)90009-9
  9. I. K. Oommen, K. S. V. Nambi, S. Sengupta, T. K. Gundu Rao, and M. Ravikumar, Appl. Radiat. Isot. 40, 879 (1989). https://doi.org/10.1016/0883-2889(89)90011-7
  10. H. C. Box, E. E. Budzinski, and H. G. Freund, J. Chem. Phys. 93, 55 (1990). https://doi.org/10.1063/1.459556
  11. E. E. Budzinski, W. R. Potter, G. Potienko, and H. C. Box, J. Chem. Phys. 70, 5040 (1979). https://doi.org/10.1063/1.437345
  12. E. Sagstuen, A. Lund, O. Awaldelkarim, M. Lindgren, and J. Westerling, J. Phys. Chem. 90, 5584 (1986). https://doi.org/10.1021/j100280a022
  13. H. C. Box, E. E. Budzinski, and H. G. Freund, Radiat. Res. 121, 262 (1990). https://doi.org/10.2307/3577775
  14. G. Vanhaelewyn, J. Sadlo, F. Callens, W. Mondelaers, D. De Frenne, and P. Matthys, Appl. Radiat. Isot. 52, 1221 (2000).