DOI QR코드

DOI QR Code

Ab initio Study for Electronic Property and Ferromagnetism of (Cu, N, or F)-codoped ZnO

  • Kang, Byung-Sub (Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Chae, Kwang-Pyo (Department of Nano Science and Mechanical Engineering, Konkuk University)
  • Received : 2012.04.07
  • Accepted : 2012.09.15
  • Published : 2012.09.30

Abstract

The effects on the ferromagnetism of the O or Zn defect in Cu-doped ZnO with the concentration of 2.77-8.33% have been investigated by the first-principles calculations. The Cu doping in ZnO was calculated to be a kind of p-type ferromagnetic half-metals. When the Zn vacancy exists in Cu-doped ZnO, the Cu magnetic moment increases, while for the O vacancy it is reduced. It is noticeable that the ferromagnetic state was originated from the hybridized O(2p)-Cu(3d)-O(2p) chain formed through the p-d coupling. The carrier-mediated ferromagnetism by nitrogen or fluorine does not depend on their concentration.

Keywords

References

  1. A. L. Rosa and R. Ahuja, Appl. Phys. Lett. 91, 232109 (2007). https://doi.org/10.1063/1.2819602
  2. Y. Chen, Q. Song, H. Yan, X. Yang, and T. Wei, Solid State Commun. 151, 619 (2011). https://doi.org/10.1016/j.ssc.2011.01.030
  3. G. Yao, G. Fan, H. Xing, S. Zheng, J. Ma, S. Li, Y. Zhang, and M. He, Chem. Phys. Lett. 529, 35 (2012).
  4. C. W. Zhang and S. S. Yan, J. Appl. Phys. 107, 043913 (2010). https://doi.org/10.1063/1.3309771
  5. P. Li, C. W. Zhang, J. Lian, S. Gao, and X. Wang, Solid State Commun. 151, 1712 (2011). https://doi.org/10.1016/j.ssc.2011.07.042
  6. Y. Zheng, J. C. Boulliard, G. Y. Demaille, Y. Bernard, and J. F. Petroff, J. Cryst. Growth 274, 156 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.009
  7. C. H. Chien, S. H. Chiou, G. Y. Guo, and Y. D. Yao, J. Magn. Magn. Mater. 282, 275 (2004). https://doi.org/10.1016/j.jmmm.2004.04.064
  8. L.-H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006). https://doi.org/10.1103/PhysRevB.73.033203
  9. K. Sato and H. Katayama-Yoshida, Phys. Status Solidi B 229, 673 (2002). https://doi.org/10.1002/1521-3951(200201)229:2<673::AID-PSSB673>3.0.CO;2-7
  10. B. S. Kang, W. C. Kim, Y. Y. Shong, and H. J. Kang, J. Cryst. Growth 287, 74 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.046
  11. S. Yu Savrasov, Phys. Rev. B54, 16470 (1996), https://doi.org/10.1103/PhysRevB.54.16470
  12. W. Kohn and L. I. Sham, Phys. Rev. 140, B1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  13. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  14. B. G. Hyde and S. Andersson, Inorganic Crystal Structure, Wiley, New York (1989).
  15. A. Beltrán, J. Andrés, M. Calatayud, and J. B. L. Martins, Chem. Phys. Lett. 338, 224 (2001). https://doi.org/10.1016/S0009-2614(01)00238-X
  16. G. Y. Ahn, S.-L Park, I.-B. Shim, and C. S. Kim, J. Magn. Magn. Mater. 282, 166 (2004). https://doi.org/10.1016/j.jmmm.2004.04.039
  17. D. B. Buchhlz, R. P. H. Chang, J. H. Song, and J. B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005). https://doi.org/10.1063/1.2032588
  18. P. Schröer, P. Krüger, and H. Pollmann, Phys. Rev. B 47, 6971 (1993). https://doi.org/10.1103/PhysRevB.47.6971

Cited by

  1. Characterization of CuZnO Diodes Prepared by Ultrasonic Spray Method vol.24, pp.8, 2015, https://doi.org/10.1007/s11666-015-0347-7