DOI QR코드

DOI QR Code

Examination of Various Metal Ion Sources for Reducing Nonspecific Zinc finger-Zn2+ Complex Formation in ESI Mass Spectrometry

  • Park, Soo-Jin (Department of Chemistry, Sogang University) ;
  • Park, Sun-Hee (Department of Chemistry, Sogang University) ;
  • Oh, Joo-Yeon (Center for Nano-Bio Technology, Korea Research Institute of Standards and Science) ;
  • Han, Sang-Yun (Center for Nano-Bio Technology, Korea Research Institute of Standards and Science) ;
  • Jo, Kyu-Bong (Department of Chemistry, Sogang University) ;
  • Oh, Han-Bin (Department of Chemistry, Sogang University)
  • Received : 2012.08.31
  • Accepted : 2012.09.17
  • Published : 2012.09.20

Abstract

The formation of zinc finger peptide-$Zn^{2+}$ complexes in electrospray ionization mass spectrometry (ESI-MS) was examined using three different metal ion sources: $ZnCl_2$, $Zn(CH_3COO)_2$, and $Zn(OOC(CHOH)_2COO)$. For the four zinc finger peptides (Sp1-1, Sp1-3, CF2II-4, and CF2II-6) that bind only a single $Zn^{2+}$ in the native condition, electrospray of apo-zinc finger in solution containing $ZnCl_2$ or $Zn(CH_3COO)_2$ resulted in the formation of zinc finger-$Zn^{2+}$ complexes with multiple zinc ions. This result suggests the formation of nonspecific zinc finger-$Zn^{2+}$ complexes. Zn(tartrate), $Zn(OOC(CHOH)_2COO)$, mainly produced specific zinc finger-$Zn^{2+}$ complexes with a single zinc ion. This study clearly indicates that tartrate is an excellent counter ion in ESI-MS studies of zinc finger-$Zn^{2+}$ complexes, which prevents the formation of nonspecific zinc finger-$Zn^{2+}$ complexes.

Keywords

References

  1. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64. https://doi.org/10.1126/science.2675315
  2. Katta, V.; Chait, B. T. J. Am. Chem. Soc. 1991, 113, 8534. https://doi.org/10.1021/ja00022a058
  3. Lim, H. K. Hsieh, Y. L. Ganem, B.; Henion, J. D. J. Mass Spectrom. 1995, 30, 708. https://doi.org/10.1002/jms.1190300509
  4. Cheng, X.; Chen, R.; Bruce, J. E.; Schwartz, B. L.; Anderson, G. A.; Hofstadler, S. A.; Gale, D. C.; Smith, R. D. J. Am. Chem. Soc. 1995, 117, 8859. https://doi.org/10.1021/ja00139a023
  5. Loo, J. A. Mass Spectrom. Rev. 1997, 16, 1. https://doi.org/10.1002/(SICI)1098-2787(1997)16:1<1::AID-MAS1>3.0.CO;2-L
  6. Rostom, A. A.; Robinson, C. V. Curr. Opin. Struct. Biol. 1999, 9, 135. https://doi.org/10.1016/S0959-440X(99)80018-9
  7. Oh, H. B.; Breuker, K.; Sze, S. K.; Ying, G.; Carpenter, B. K.; McLafferty, F. W. Proc. Nat'l. Acad. Sci. U.S.A. 2002, 99, 15863. https://doi.org/10.1073/pnas.212643599
  8. Lee, S. Y.; Park, S. J. Ahn, S. H.; Oh, H. B. Int. J. Mass Spectrom. 2009, 279, 47. https://doi.org/10.1016/j.ijms.2008.10.008
  9. Seong, Y. M.; Han, S. Y.; Jo. S. C.; Oh, H. B. Mass Spectrom. Lett. 2011, 2, 73. https://doi.org/10.5478/MSL.2011.2.3.073
  10. Hutchens, T. W.; Allen, M. H.; Li, C. M.; Yip, T. T. Febs Lett. 1992, 309, 170. https://doi.org/10.1016/0014-5793(92)81088-4
  11. Hu, P. F.; Ye, Q. Z.; Loo, J. A. Anal. Chem. 1994, 66, 4190. https://doi.org/10.1021/ac00095a013
  12. Feng, R.; Castelhano, A. L.; Billedeau, R.; Yuan, Z. Y. J. Am. Soc. Mass Spectrom. 1995, 6, 1105. https://doi.org/10.1016/1044-0305(95)00548-X
  13. Cheng, X.; Chen, R.; Bruce, J. E.; Schwartz, B. L.; Anderson, G. A.; Hofstadler, S. A.; Gale, D. C.; Smith, R. D.; Gao, J.; Sigal, G. B.; Mammen, M.; Whitesides, G. M. J. Am. Chem. Soc. 1995, 117, 8859. https://doi.org/10.1021/ja00139a023
  14. Rostom, A. A.; Tame, J. R. H.; Ladbury, J. E.; Robinson. C. V. J. Mol. Biol. 2000, 296, 269. https://doi.org/10.1006/jmbi.1999.3431
  15. Kempen, E. C.; Brodbelt, J. S. Anal. Chem. 2000, 72, 5411. https://doi.org/10.1021/ac000540e
  16. Wang, W.; Kitova, E. N.; Klassen, J. S. Anal. Chem. 2003, 75, 4945. https://doi.org/10.1021/ac034300l
  17. Gabelica, V.; Galic, N.; Rosu, F.; Houssier, C.; De Pauw, E. J. Mass Spectrom. 2003, 38, 491. https://doi.org/10.1002/jms.459
  18. Speir, J. P.; Senko, M. W.; Little. D. P.; Loo, J. A.; McLafferty, F. W. J. Mass Spectrom. 1995, 30, 39. https://doi.org/10.1002/jms.1190300108
  19. Tolic, L. P.; Bruce, J. E.; Lei, Q. P.; Anderson, G. A.; Smith, R. D. Anal. Chem. 1998, 70, 405. https://doi.org/10.1021/ac970828c
  20. Yi, S.; Boys, B. L.; Brickenden, A.; Konermann, L.; Choy, W. Y. Biochemistry 2007, 46, 13120. https://doi.org/10.1021/bi7014822
  21. Niessen, W. M. J. Chromatogr. A 1999, 856, 179. https://doi.org/10.1016/S0021-9673(99)00480-X
  22. Cavanagh, J.; Benson, L. M.; Thompson, R.; Naylor, S. Anal. Chem. 2003, 75, 3281. https://doi.org/10.1021/ac030182q
  23. Pan, J.; Xu, K.; Yang, X.; Choy, W.-Y.; Konermann, L. Anal. Chem. 2009, 81, 5008. https://doi.org/10.1021/ac900423x
  24. Miller, J.; McLachlan, A. D.; Klug, A. EMBO J. 1985, 4, 1609.
  25. Jamieson, A. C.; Miller, J. C.; Pabo, C. O. Nature Reviews Drug Discovery 2003, 2, 361. https://doi.org/10.1038/nrd1087
  26. Park, S. J.; Jo, K. B.; Oh, H. B. Analyst 2011, 136, 3739. https://doi.org/10.1039/c1an15376e
  27. Kriwacki, R. W.; Schultz, S. C.; Steitz, T. A.; Caradonna, J. P. Proc. Nat'l. Acad. Sci. U.S.A. 1992, 89, 9759. https://doi.org/10.1073/pnas.89.20.9759
  28. Hsu, T.; Gogos, J. A.; Kirsh, S. A.; Kafatos, F. C. Science 1992, 257, 1946. https://doi.org/10.1126/science.1411512
  29. Gogos, J. A.; Jin, J.; Wan, H.; Kokkinidis, M.; Kafatos, F. C. Proc. Nat'l. Acad. Sci. U.S.A. 1996, 93, 2159. https://doi.org/10.1073/pnas.93.5.2159

Cited by

  1. Mass Spectrometric Determination of Zn2+ Binding/Dissociation Constant for Zinc Finger Peptides vol.6, pp.1, 2015, https://doi.org/10.5478/MSL.2015.6.1.7