DOI QR코드

DOI QR Code

Organic Acid Profiling Analysis in Culture Media of Lactic Acid Bacteria by Gas Chromatography-Mass Spectrometry

  • Lee, Jae-Yeon (R&D Center for Life Science, Biotopia Co., Ltd.) ;
  • Nguyen, Duc-Toan (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Young-Shik (R&D Center for Life Science, Biotopia Co., Ltd.) ;
  • Hwang, Kyo-Yeol (R&D Center for Life Science, Biotopia Co., Ltd.) ;
  • Cho, Yong-Seok (R&D Center for Life Science, Biotopia Co., Ltd.) ;
  • Kang, Kyung-Don (R&D Center for Life Science, Biotopia Co., Ltd.) ;
  • Yoon, Jae-Hwan (Department of Molecular Science and Technology, Ajou University) ;
  • Yu, Jun-Dong (Racing Laboratory, Korea Racing Authority) ;
  • Yee, Sung-Tae (College of Pharmacy, Sunchon National University) ;
  • Ahn, Young-Hwan (Department of Neurosurgery, Ajou University School of Medicine) ;
  • Lee, Gwang (Department of Molecular Science and Technology, Ajou University) ;
  • Seong, Su-Il (R&D Center for Life Science, Biotopia Co., Ltd.) ;
  • Paik, Man-Jeong (College of Pharmacy, Sunchon National University)
  • Received : 2012.05.30
  • Accepted : 2012.08.20
  • Published : 2012.09.20

Abstract

Organic acid (OA) profiling analysis was performed in culture media from Lactobacillus pentosus K34 (L. pentosus K34) and Pediococcus lolli PL24 (P. lolli PL24) by gas chromatography-mass spectrometry (GC-MS) following methoxime/tert-butyldimethylsilyl derivatives. 12 OAs were positively identified in culture media. Most of OA levels from L. pentosus K34 of hetero lactic fermentation were found to be higher when compared with those from P. lolli PL24 of homo lactic fermentation, which may explain different OA metabolism in each strain. In addition, the distorted dodecagonal star patterns were readily distinguishable, and the characteristics of each strain were well represented. The present study demonstrates that the OA metabolic profiling method by GC-MS combined with star pattern recognition is useful for the monitoring study of characteristic OA metabolism in various microorganisms.

Keywords

References

  1. Matsumoto, I.; Kuhara, T. Mass Spectrom. Rev. 1987, 6, 77. https://doi.org/10.1002/mas.1280060103
  2. Liebich, H. M.; Forst, C. J. Chromatogr. 1990, 525, 1. https://doi.org/10.1016/S0378-4347(00)83375-7
  3. Duez, P.; Kumps, A.; Mardens, Y. Clin. Chem. 1996, 42, 1609.
  4. Caligiani, A.; Cirlini, M.; Palla, G.; Ravaglia, R.; Arlorio, M. Chirality 2007, 19, 329. https://doi.org/10.1002/chir.20380
  5. Grabar, T. B.; Zhou, S.; Shanmugam, K. T.; Yomano, L. P.; Ingram, L. O. Biotechnol. Lett. 2006, 28, 1527. https://doi.org/10.1007/s10529-006-9122-7
  6. Joshi, D. S.; Singhvi, M. S.; Khire, J. M.; Gokhale, D. V. Biotechnol. Lett. 2010, 32, 517. https://doi.org/10.1007/s10529-009-0187-y
  7. John, R. P.; Nampoothiri, K. M.; Pandey, A. Appl. Microbiol. Biotechnol. 2007, 74, 524. https://doi.org/10.1007/s00253-006-0779-6
  8. Ewaschuk, J. B.; Zello, G. A.; Naylor, J. M.; Brocks, D. R. J. Chromatogr. B 2002, 781, 39. https://doi.org/10.1016/S1570-0232(02)00500-7
  9. Paik, M. J.; Nguyen, D. T.; Yoon, J.; Chae, H. S.; Kim, K. R.; Lee, G.; Lee, P. C. Bull. Korean Chem. Soc. 2011, 32, 2418. https://doi.org/10.5012/bkcs.2011.32.7.2418
  10. Lee, J. Y.; Hwang, K. Y.; Kim, K.; Seong, S. I.; Park, Y. S.; Paik, M. J.; Kim, K.R. Kor. J. Microbiol. Biotechnol. 2002, 30, 241.
  11. Dieuleveux, V.; van der Pyl, D.; Chataud, J.; Gueguen, M. Appl. Environ. Microbiol. 1998, 64, 800.
  12. Dieuleveux, V.; Lemarinier, S. ; Gueguen, M. Intl. J. Food Microbiol. 1998, 40, 177. https://doi.org/10.1016/S0168-1605(98)00031-2
  13. Li, X. F.; Jiang, B.; Pan, B. L.; Mu, W. M. ; Zhang, T. J. Agric. Food Chem. 2008, 56, 2392. https://doi.org/10.1021/jf0731503
  14. Paik, M. J.; Kim, K. R. J. Chromatogr. A 2004, 1034, 13. https://doi.org/10.1016/j.chroma.2004.02.032
  15. Paik, M. J.; Cho, E. Y.; Kim, H.; Kim, K. R.; Choi, S.; Ahn, Y. H.; Lee, G. Biomed. Chromatogr. 2008. 22, 450. https://doi.org/10.1002/bmc.966
  16. Zanoni, P.; Farrow, J. A. E.; Phillps, B. A.; Collins, M. D. Intl. J. Systematic Bacteriol. 1987, 37, 339. https://doi.org/10.1099/00207713-37-4-339
  17. Doi, K.; Nishizaki, Y.; Fujino, Y.; Ohshima, T; Ohmomo, S.; Ogata, S. Intl. J. Systematic and Evolutionary Microbiol. 2009, 59, 1007. https://doi.org/10.1099/ijs.0.005793-0
  18. Ross, R. P.; Desmond, C.; Fitzgerald, G. F.; Stanton, C. J. Appl. Microbiol. 2005, 98, 1410. https://doi.org/10.1111/j.1365-2672.2005.02654.x
  19. Paik, M. J.; Li, W. Y.; Ahn, Y. H.; Lee, P. H.; Choi, S.; Kim, K. R.; Kim, Y. M.; Bang, O. Y.; Lee, G. Clin. Chim. Acta 2009, 402, 25. https://doi.org/10.1016/j.cca.2008.12.022
  20. van Kranenberg, R.; Leerebezem, M.; Vlieg, J. van H.; Ursing, B.M.; Boekhorst, J.; Smit, B. A.; Ayad, E. H. E.; Smit, G.; Siezen, R. J. Intl. Dairy J. 2002, 12, 111. https://doi.org/10.1016/S0958-6946(01)00132-7

Cited by

  1. Inhibitory effects of lactic acid bacteria isolated from traditional fermented foods against aflatoxigenic Aspergillus spp. vol.26, pp.5, 2017, https://doi.org/10.1007/s00580-017-2489-0
  2. Marine Lactobacillus pentosus H16 protects Artemia franciscana from Vibrio alginolyticus pathogenic effects vol.113, pp.1, 2015, https://doi.org/10.3354/dao02815