DOI QR코드

DOI QR Code

Effect of Virus-free Plant and Subsoiling Reversion Soil for Reduction of Injury by Continuous Cropping of Sweet Potato

고구마 연작장해 경감을 위한 바이러스 무병묘 재배와 심토반전 효과

  • Song, Hae-Ahn (Department of Economics, Jeonju University) ;
  • Kim, Kab-Cheol (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Lee, Seung-Yeob (Institute of Life Science and Natural Resources, Wonkwang University)
  • 송해안 (전주대학교 경제학과) ;
  • 김갑철 (전북농업기술원 기후변화대응과) ;
  • 이승엽 (원광대학교 생명자원과학연구소)
  • Received : 2012.06.13
  • Accepted : 2012.07.18
  • Published : 2012.09.30

Abstract

To reduce the injury by continuous cropping of sweet potato (Ipomoea batatas (L.) Lam.), the farmer's plant and virus-free plant were cultivated with the density of $70{\times}25cm$ (June 10, 2011) in continuous cropping soil (CCS) and subsoiling reversion soil (SRS). Fertilizer was applied at the rates of 55-63-156 $kg\;ha^{-1}$ ($N-P_2O_5-K_2O$) and 10 $ton\;ha^{-1}$ of cattle manure in CCS, and it was applied the 50% increased cattle manure compost and nitrogen in DRS. Symptoms of viral infection were revealed in the farmer's plant at 30 days after planting, but there were no symptoms in virus-free plant. The yield of virus-free plant was more increased 15% and 10.5% than that of farmer's plant in DRS and CCS, respectively. The yield of sweetpotato in SRS was more increased 8.8% and 3.2% in farmer's plant and virus-free plant compared to CCS, respectively. In DRS, the rate of marketable tuber of virus-free plant was increased by 80% compared to the farmer's plant (60.1%). The virus-free plant was produced the tuber with more brilliant peel color and well-formed shape compared to the farmer's plant. The increased yield of virus-free plant and in SRS soil condition showed a positive relationship (p=0.05) with the number of leaf per plant at 30 days and the number of branch per plant at 120 days after planting. The results showed that the early growth after planting was very important for the development of storage root. Therefore, the deep-subsoil reversion and cultivation of virus-free plant could be reduced the injury by continuous cropping of sweet potato, and increased farm income.

고구마의 연작장해를 경감시키기 위하여, 연작지 토양과 심토반전 토양에서 농가묘와 바이러스 무병묘를 $70{\times}25cm$ 간격으로 재배하였다. 연작지 토양의 시비량은 $N-P_2O_5-K_2O$ = 55-63-156$kg\;ha^{-1}$과 우분퇴비 10$ton\;ha^{-1}$으로 표준시비를 하였고, 심토반전 토양은 질소비료와 퇴비만을 50% 증시하였다. 삽식 30, 120일째의 생육과 수량 및 품질특성을 조사한 결과는 다음과 같다. 1. 삽식 30일경부터 농가묘에서는 바이러스 병징이 뚜렷하였으나, 무병묘에서는 나타나지 않았다. 2. 무병묘의 수량성은 농가묘보다 심토반전 토양 15.0%, 연작지 10.5%의 증가를 보였다. 3. 심토반전 토양에서의 수량성은 연작지보다 농가묘 8.8%, 무병묘 3.2%의 증가를 보였으며, 심토반전 토양에서 바이러스 무병묘 재배는 상저비율이 농가묘(60.1%) 대비 80%로 높아져 경제성이 있었다. 4. 무병묘에서 수확한 고구마의 품질은 농가묘보다 피색이 선명하고, 고구마 모양이 좋아져 외관 품질향상에도 유리하였다. 5. 심토반전 토양 및 무병묘에서 수량증가는 30일째 엽수와 120일째 분지수와 정의 상관관계(p=0.05)가 인정되었으며, 이는 고구마 괴근형성에 초기생육이 중요하다는 것을 보여주었다.

Keywords

References

  1. Carrolla, H. W., A. Q. Villordonc, C. A. Clarkb, D. R. La Bontea, and M. W. Hoya. 2004. Studies on Beauregard sweetpotato clones naturally infected with viruses. Int. J. Pest Manag. 50 : 101-106. https://doi.org/10.1080/09670870410001655894
  2. Chung M. N. 2008. A study on the virus detection methods and virus-free plant mass production in sweetpotato. Ph.D. thesis. Chonnam National University, Gwangju, Korea.
  3. Clark, C. A. and M. W. Hoy. 2006. Effects of common viruses on yield and quality of Beauregard sweetpotato in Louisiana. Plant Dis. 90 : 83-88. https://doi.org/10.1094/PD-90-0083
  4. Clark, C. A. and R. A. Valverde. 2000. Identifying the role of viruses in sweet potato cultivar decline in Louisiana, USA. in: Int. Workshop Sweetpotato Cultivar Decline Study. Y. Nakasawa and K. Ishiguro, eds. Miyakonojo, Japan. pp. 62-69.
  5. Fuglie, K. O., L. Zhang, L. F. Salazar, and T. S. Walker. 1999. Economic impact of virus-free sweetpotato planting material in Shandong province, China. In: Impact on a Changing World. CIP program report 1997-98. CIP, Rima, Peru. pp. 249-254.
  6. Gibson, R. W., I. Mpembe, T. Alicai, E. E. Carey, R. O. M. Mwanga, S. E. Seal, and H. J. Vetten. 1998. Symptoms, aetiology and serological analysis of sweet potato virus disease in Uganda. Plant Pathol. 47 : 95-102. https://doi.org/10.1046/j.1365-3059.1998.00196.x
  7. Gibson R. W., R. O. M. Mwanga, S. Kasule, I. Mpembe, and E. E. Carey. 1997. Apparent absence of viruses in most symptomless field-grown sweet potato in Uganda. Ann. Appl. Biol. 130 : 481-490. https://doi.org/10.1111/j.1744-7348.1997.tb07676.x
  8. Gutierrez, D. L., S. Fuentes, and L. Salazar. 2003. Sweetpotato virus disease (SPVD): distribution, incidence, and effect on sweetpotato yield in Peru. Plant Dis. 87 : 297-302. https://doi.org/10.1094/PDIS.2003.87.3.297
  9. Jun, H. S., W. C. Park, and J. S. Jung. 2002. Effects of soil addition and subsoil plowing on the change of soil chemical properties and the reduction of root-knot nematode in continuous cropping field of oriental melon (Cucumis melo L.). Kor. J. Environ. Agr. 21 : 1-6. https://doi.org/10.5338/KJEA.2002.21.1.001
  10. Kano, Y. and R. Nagata. 1999. Comparison of the rooting ability of virus infected and virus-free cuttings of sweet potatoes (Ipomoea batatas Poir.) and an anatomical comparison of roots. J. Hort. Sci. Biotechnol. 74 : 785-790.
  11. Karyeija, R. F., R. W. Gibson, and J. P. T. Valkonen. 1998. The significance of sweetpotato feathery mottle virus in subsistence sweetpotato production in Africa. Plant Dis. 82 : 4-15. https://doi.org/10.1094/PDIS.1998.82.1.4
  12. Ling, K. S., D. M. Jackson, H. Harrison, A. M. Simmons, and Z. Pesic-Van Esbroeck. 2010. Field evaluation of yield effects on the USA heirloom sweetpotato cultivars infected by Sweet potato leaf curl virus. Crop Protection 29 : 757-765.
  13. Loebenstein, G., S. Fuentes, J. Cohen, and L. F. Salazar. 2003. Sweet potato. in: Virus and Virus-like Diseases of Major Crops in Developing Countries. G. Loebenstein and G. Thottappilly (eds.). Kluber Academic Publishers, The Netherlands. p. 223-248.
  14. Matimati, I., E. Hungwe, and F. S. Murungu. 2005. Vegetative growth and tuber yields of micropropagated and farm-retained sweet potato (Ipomea batatas) Cultivars. J. Agron. 4 : 156-160. https://doi.org/10.3923/ja.2005.156.160
  15. Melo Filho P. A., R. O. Resende, C. M. T. Cordeiro, J. A. Buso, A. C. Torres, and A. N. Dusi. 2006. Viral reinfection affecting bulb production in garlic after seven years of cultivation under field conditions. Eur. J. Plant Pathol. 116 : 95-101. https://doi.org/10.1007/s10658-006-9042-3
  16. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15 : 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Tairo, F., S. B. Mukasa, R. C. Jones, A. Kullaya, P. R. Rubaihayo, and J. P. T. Valkonen. 2005. Unravelling the genetic diversity of the three main viruses involved in sweet potato virus disease (SPVD),and its practical implications. Mol. Plant Pathol. 6 : 199-211. https://doi.org/10.1111/j.1364-3703.2005.00267.x
  18. Teow, C. C., V. Truong, R. F. McFeeters, R. L. Thompson, K. V. Pecota, and G. C. Yencho. 2007. Antioxidant activities, phenolic and $\beta$-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 103 : 829-838. https://doi.org/10.1016/j.foodchem.2006.09.033
  19. Untiveros, M., S. Fuentes, and L. F. Salazar. 2007. Synergistic interaction of sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 91 : 669-676. https://doi.org/10.1094/PDIS-91-6-0669
  20. Villordon, A., D. R. LaBonte, N. Firon, Y. Kfir, E. Pressman, and A. Schwartz. 2009. Characterization of adventitious root development in sweetpotato. HortScience 44 : 651-655.
  21. Yang, C. L., Y. F. Shang, J. H. Zhao, and C. S. Li. 1998. Produce techniques and practice of virus-frees weetpotato. Acta Phytophylac. Sin. 25 : 51-55.

Cited by

  1. Effect of Subsoiling on Growth and Yield of Sweetpotato in Continuous Sweetpotato Cropping Field vol.60, pp.1, 2015, https://doi.org/10.7740/kjcs.2014.60.1.047
  2. Effect of Virus Free Stocks of Sweetpotato Cultivated at Different Regions vol.60, pp.1, 2015, https://doi.org/10.7740/kjcs.2014.60.1.054
  3. Growth Characteristics and Yield of Sweet Potato Cultivars between Virus-free and Farmer's Slips in Late Season Cultivation vol.58, pp.1, 2013, https://doi.org/10.7740/kjcs.2013.58.1.043
  4. LED 광질에 따른 고구마의 묘소질 및 괴근 수량성 vol.23, pp.4, 2014, https://doi.org/10.12791/ksbec.2014.23.4.356
  5. 고구마 바이러스 무병묘의 세대간 생육 및 수량 변이 vol.23, pp.4, 2012, https://doi.org/10.12791/ksbec.2014.23.4.376
  6. 전북지역 적응 다수성 가공용 고구마 적품종 선발 vol.62, pp.4, 2017, https://doi.org/10.7740/kjcs.2017.62.4.367