DOI QR코드

DOI QR Code

Study on the Antioxidant Effects of Nano-Selenium Microcapsule

Nano-Selenium Microcapsule의 항산화에 관한 연구

  • Jeong, Hun (Dept. of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Yoo, Il-Su (Dept. of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kim, Kyung-Sun (Dept. of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Lee, Soon-Young (Dept. of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Mun, Yeun-Ja (Dept. of Anatomy, College of Oriental Medicine, Wonkwang University) ;
  • Jeon, Byoung-Kook (Dept. of Anatomy, College of Oriental Medicine, Wonkwang University) ;
  • Ryu, Moon-Hee (Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University) ;
  • Choi, Kyung-Soon (Dept. of Food & Nutrition, Shamyook University)
  • 정훈 (전북대학교 공과대학 고분자나노공학과) ;
  • 유일수 (전북대학교 공과대학 고분자나노공학과) ;
  • 김경선 (전북대학교 공과대학 고분자나노공학과) ;
  • 이순영 (전북대학교 공과대학 고분자나노공학과) ;
  • 문연자 (원광대학교 한의과대학 해부학교실,) ;
  • 전병국 (원광대학교 한의과대학 해부학교실,) ;
  • 류문희 (전북대학교 환경생명자원대학 생명공학부) ;
  • 최경순 (삼육대학교 식품영양학과)
  • Received : 2012.08.02
  • Accepted : 2012.08.21
  • Published : 2012.09.30

Abstract

Selenium was initially considered toxic to humans, but it was then discovered that selenium is essential for normal life processes. Selenium plays important roles in antioxidants. It is expected that chitosan microcapsules containing nano-selenium will be able to be used as a key material in bio-medical and cosmetic applications. The high concentration of chitosan derivatives guarantees increased antioxidative activity. Both inorganic and organic forms of selenium can be nutritional sources. The antioxidant properties of selenoproteins help prevent cellular damage from free radicals. The objective of this experiment was to study the antioxidative activity of chitosan nano-selenium. Our experiments were divided into five groups, in the presence of various concentrations(0.1%, 0.3%, 0.5%, 0.7%, and 0.9%) of chitosan. We performed an assessment of the antioxidant properties and cytotoxicity of respective concentrations of chitosan nano-selenium. The antioxidant activity was examined by the free radical scavenging activity on 1,1-diphenyl-2-picrylhydrazyl(DPPH) assay. The cytotoxicity effect was measured by means of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay. As a result, the electron donating abilities of 0.1%, 0.3%, 0.5%, 0.7%, and 0.9% of chitosan nano-selenium exhibited effective andioxidant scavenging activity at 12.5 ${\mu}g/m{\ell}$ against DPPH radicals. 0.3% chitosan nano-selenium did not show cytotoxicity on human keratinocytes. In general, the cytotoxicity of 0.1% and 0.9% chitosan nano-selenium showed the lowest effects. Though low cytotoxicity of 0.5% and 0.7% chitosan nano-selenium exhibited 29.67% and 38.4% against human keratinocytes on adding 100 ${\mu}g/m{\ell}$ and 50 ${\mu}g/m{\ell}$, respectively, cell vitality was recovered with 200 ${\mu}g/m{\ell}$. These findings support the notion that chitosan nano-selenium may be useful as a new active ingredient source for bioactive compounds.

항산화 기능이 있는 것으로 알려진 셀레늄의 약물전달 효율을 높이기 위하여 마이크로 캡슐 피막제로 키토산(0.1~0.9%)을 사용하여 chitosan nano-selenium을 제조하여 chitosan nan-oselenium의 모양과 형태는 주사전자현미경(SEM)을 이용하여 관찰하였고, 입자의 크기는 ELS-8000으로 측정하였으며, chitosan nano-selenium의 항산화 효능과 세포독성을 조사하였다. Chitosan nano-selenium의 모양과 형태를 SEM(JSM-5400, Japan)으로 관찰한 결과 구형을 이루고 있어 마이크로 캡슐을 형성한 것을 알 수가 있었고, chitosan nano-selenium의 입자의 크기를 ELS-8000으로 측정한 결과, 입자 크기는 대략 50~500 nm로 분포되었으며, chitosan nano-selenium은 chitosan 농도가 높을수록 입자의 크기도 커지는 것을 알 수가 있었다. 입자 크기는 0.1% chitosan nano-selenium은 $55{\pm}5$ nm가 많이 분포가 되어 있고, 0.3%는 $60{\pm}5$ nm가 많이 분포되어 있고, 0.5%는 $70{\pm}5$ nm, 0.7%는 $100{\pm}5$ nm, 0.9%는 $450{\pm}5$ nm가 많이 분포되어 있는 것을 확인하였다. 0.1% chitosan nano selenium 전자공여능은 50 ${\mu}g/m{\ell}$ 농도에서 0.1%, 0.3%, 0.5%, 0.7% 및 0.9% chitosan nano selenium은 90.28.0%, 90.36%, 89.34%, 89.33% 및 89.49%로 나타나 항산화효능의 높은 값을 보였으나, chitosan 함량에 따른 항산화 효능의 차이는 볼 수 없었다. Chitosan nano-elenium은 0.1%, 0.3%, 0.9% chitosan nano-selenium에서의 독성이 강하게 나타나지 않았으며, 0.7% chitosan nano-selenium에서는 50 ${\mu}g/m{\ell}$ 농도에서 61.60% 생존율을 보여 약간의 독성이 있었지만 200 ${\mu}g/m{\ell}$에서 85.44%로 생존율이 증가하였고, 0.9% chitosan nano-selenium에서 생존율이 90.08~98.71%로 가장 높은 값을 보였다.

Keywords

References

  1. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181:1199-1200 https://doi.org/10.1038/1811199a0
  2. Camara C, Cobo MG, Palacios MA, Munoz R, Donard OFX. 1995. Selenium speciation analyses in water and sediment matrices. In Quevauviller Ph, Majer E, Griepink B(Eds.). Quality Assurance for Environmental Analysis 235-261
  3. Choi YS, Jonhn E. 2006. Hesketh. Nutritional biochmistry of selenium. Journal of The Korean Society of Food Science and Nutrition 35:661-670 https://doi.org/10.3746/jkfn.2006.35.5.661
  4. Finley JW. 1998. The absorption and tissue distribution of selenium from high-selenium brocoli are different from selenium from sodium selenite, sodium selenate, and selenomethionine as determined in selenium-deficient rats. J Agric Food Chem 46:3702-3707 https://doi.org/10.1021/jf980027q
  5. Greger JN, Helen WL. 1987. The toxicology of dietary selenium. In "Nutritional Toxicology II", Academic Press 234
  6. Hill KE, Burk RF. 1984. Influence of vitamin E and selenium on glutathione-dependent protection against microsomal lipid peroxidation. Biochemical Pharmacology 33:1065-1068 https://doi.org/10.1016/0006-2952(84)90514-8
  7. Hilton JW, Hodson PV, Slinger SJ. 1980. The requirement and toxicity of selenium in rainbow trout(Salmo gairdner). The Journal of Nutrition 110:2527-2535 https://doi.org/10.1093/jn/110.12.2527
  8. Hu QH, Zhu JC. 2000. Biological geochemistry and selenium in food chain. Rural Ecoenviron 16:54-57
  9. Huttnen JK. 1997. Selenium and cardiovascular diseases-an update. Biomed Environ Sci 10:220
  10. Ip C, Lisk DJ, Thompson HJ. 1996. Selenium-enriched garlic inhibits the early stage but not the late stage of mammary carcinogenesis. Carcinogenesis 17:1979-1982 https://doi.org/10.1093/carcin/17.9.1979
  11. Ip C. 1998. Lessons from basic research in selenium and cancer prevention. J Nutr 128:1845-1854 https://doi.org/10.1093/jn/128.11.1845
  12. Jenning V, Gohla SH. 2001. Encapsulation of retionoids in solid lipid nanoparticles. Microencapsulation 18:149-158 https://doi.org/10.1080/02652040010000361
  13. Jeon YJ, Lee EH, Kim SK. 1996. Bioactivities of chitin and chitosan(1)-antimicrobial function, hypertension control function and choresterol control function. Korean Soc of Chitin and Chitosan 1:4-13
  14. Jim M, Truswell AS. 2002. Essentials of Human Nutrition (2nd ed.). Oxford University Press ISBN 9780192627568
  15. Keshan Disease Research Group. 1979. Epidemiologic studies on the etiologic relationship of selenium and Keshan disease. Chin Med J 92:477-482
  16. Kim DK, Jung BJ, Son DM, Chon SU, Lee KD, Kim KS, Rim YS. 2007. Effects of selenium(Se) on growth and se content of mungbean. Korean J Plant Res 20:383-388
  17. Kim EM, McCOY, Paul HW. 1969. Some selenium responses in the rat not related to vitamin E. J Nutrition 98:383-389 https://doi.org/10.1093/jn/98.4.383
  18. Kos V, Veber M, Hudnik V. 1998. Determination of selenium in soil by hydride generation AAS. Fresenius Journal of Analytical Chemistry 360:225-229 https://doi.org/10.1007/s002160050679
  19. Lee OH, Moon JW, Chung YS. 2003. Assessment of selenium status in adult females according to life cycle. The Korean Journal of Nutrition 36:491-499
  20. Lee SP, Kim SW, Sohn ES, Kang JS. 2003. Technology trend analysis of chitosan. J Chitin Chitosan 8:192-201
  21. Levander OA. 1987. A global view of human selenium nutrition. Ann Rev Nutr 7:227 https://doi.org/10.1146/annurev.nu.07.070187.001303
  22. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  23. Na JC, Kim JH, Yu Dj, Jang BG, Kang GH, Kim SH, Kang BS, Choi CH, Sub OS, Lee WJ, Lee JC. 2007. Effects of dietary organic selenium and vitamin E on performance, selemium retention and quality of egg in laying hens. Korean J Poult Sci 34:157-163 https://doi.org/10.5536/KJPS.2007.34.3.157
  24. Robberecht H, Grieken RV. 1982. Selenium in environmental waters: Determination, speciation and concentration levels. Talanta 29:823-844 https://doi.org/10.1016/0039-9140(82)80252-X
  25. Shi LG, Yang RJ, Yue WB, Xun WJ, Zhang CX, Ren YS, Shi L, Lei FL. 2010. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Animal Reproduction Science 118:248-24 https://doi.org/10.1016/j.anireprosci.2009.10.003
  26. Shisler JL, Senkevich TG, Berry MJ, Moss B. 1998. Ultravioletinduced cell death blocked by a selenoprotein from a human dermatotropic poxvirus. Science 279:102 https://doi.org/10.1126/science.279.5347.102
  27. Son YH, Yoo JE, Heo JY, Jang SP, Lee BS, Lee BR, Yun SG, Lee CH. 2008. A study of the efficacy of hair analysis relative to serum and organ analysis for assessing heavy metal reduction in living animals treated with an herbal medicine remnant and organic selenium. Korean J Food Sci Ani Resour 28:222-231 https://doi.org/10.5851/kosfa.2008.28.2.222
  28. Surai PF. 2002. Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. World's Poultry Science Journal 58:333 https://doi.org/10.1079/WPS20020026
  29. Wang HL, Zhang JS, Yu HQ. 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzyme: Comparison with selenomethione in mice. Free Radical Biology & Medicine 42:1524-1533 https://doi.org/10.1016/j.freeradbiomed.2007.02.013