DOI QR코드

DOI QR Code

Modeling Scheme for Weld-Jointed Parts for Precise Structural Analysis of Large-Scale Structures

대형구조물의 구조해석 정밀도 향상을 위한 용접부 모델링 기법

  • Jin, Dawei (Graduate School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Park, Sang-Hu (School of Mechanical Engineering, ERC/NSDM, Pusan Nat'l Univ.)
  • 다웨이진 (부산대학교 기계공학부 대학원) ;
  • 박상후 (부산대학교 기계공학부/정밀정형 및 금형가공연구소)
  • Received : 2012.03.05
  • Accepted : 2012.08.22
  • Published : 2012.10.01

Abstract

Welding is a well-developed, widely used process for permanently joining metal components. However, the mechanical reliability of welded parts still offers room for improvement. A weld region consists of a fusion zone, a partially melted zone, and a heat-affected zone, and each zone has different material properties. In addition, the geometrical shape of a weld bead or fillet influences the mechanical reliability. A precise structural analysis must consider how a local welded region influences the mechanical behavior of the entire structure. This study focuses on an effective modeling scheme for the weld region. It relies on experimental and numerical methods to determine the proper correlation based on experimental results and to propose a modeling scheme for welded parts.

용접은 대형구조물을 제작할 때 영구적 접합을 위해서 많이 사용하는 공정이다. 용접부는 용융부, 부분용융부, 열영향부로 나누어지며 각각의 영역들은 다른 재료물성을 가지게 된다. 또한 용접부는 용접비드 형상에 따라 기계적 신뢰성이 많이 차이 난다. 따라서 정밀한 구조해석을 수행하기 위해서는 이러한 국부적인 용접부의 특성을 잘 고려해야 한다. 본 연구에서는 이러한 용접부의 효과적인 모델링 방법에 대하여 제안하고자 한다. 특히 하중을 받는 구조물에 잘 일어나는 세 가지 변형모드(인장모드, 굽힘모드, T-굽힘모드)에 대하여 용접부를 정밀하게 모델링하는 방법을 제안하였다. 대형구조물의 구조해석을 통하여 제안된 모델링 방법이 변형, 응력분포 등을 좀 더 정밀하게 묘사해 줌을 해석적으로 확인하였다.

Keywords

References

  1. Easterling, K. E., 1993, "Mathematical Modeling of Weld Phenomena," H. Cerjack and K. E. Easterling Eds, Institute of Materials, pp. 183-200.
  2. Mackerle, J., 2002, "Finite-Element Analysis and Simulation of Welding - An Addendum: a Bibliography (1996-2001)," Modeling Simul. Sci. Eng., Vol. 10, pp. 295-318. https://doi.org/10.1088/0965-0393/10/3/304
  3. Lindgren, L. E., 2006, "Numerical Modeling of Welding," Comput. Methods Appl. Mech. Engrg., Vol. 195, pp. 6710-6736. https://doi.org/10.1016/j.cma.2005.08.018
  4. Zuniga, S. M. and Sheppard, S. D., 1995, "Determining the Constitutive Properties of the Heat- Affected Zone in a Resistance Spot Weld," Modeling Simul. Sci. Eng., Vol. 3, pp. 391-416. https://doi.org/10.1088/0965-0393/3/3/007
  5. Chidiac, S. E. and Mirza, F. A., 1993, "Thermal Stress Analysis due to Welding Processes by the Finite Element Method," Computers & Structures, Vol. 46, No. 3, pp. 407-412. https://doi.org/10.1016/0045-7949(93)90210-5
  6. Lee, C. H., Lee, J. B., Park, D. H. and Na, S. J., 2008, "Computer Simulation of Residual Stresses in Welding Process Using Finite Element Method," Material Science Forum, Vol. 580-582, pp. 439-442.
  7. Yajiang, L., Juan, W., Maoai, C. and Xiaqin, S., 2004, "Finite Element Analysis of Residual Stress in the Welded Zone of a High Strength Steel," Bull. Mater. Sci., Vol. 27, No. 2, pp. 127-132. https://doi.org/10.1007/BF02708494
  8. Frewin, M. R. and Scott, D. A., 1999, "Finite Element Model of Pulsed Laser Welding," Welding Research Supplement, pp. 15-22.
  9. Murakawa, H. and Minami, H., 2002, "Development of Finite Element Method for Seam Welding and Its Application to Optimization of Welding Condition," Proc. the Twelfth International offshore and Polar Engineering Conference, Kitakyushu, Japan, pp. 26-31.
  10. Nam, G. J., Kim, K.W., Hong, U. J., Lee, J. H., Suh, J. and Cho, H. Y., 2006, "Finite Element Analysis of Nd:YAG Pulse Laser Welding for AISI 304 Stainless Steel Plate," Trans. Kor. Soc. Mecha. Eng. A, Vol. 30, pp. 428-434. https://doi.org/10.3795/KSME-A.2006.30.4.428
  11. Joo, B.-H., Byun, H.-B. and Lee, B.-C., 2005, "Performance Evaluation for the Methods of Spot Weld Modeling Considering Durability," Trans. of KSME A, Vol. 29, No. 8, pp. 1153-1160.
  12. ASTM E 18, 2008, "Standard Test Methods for Rockwell Hardness of Metallic Materials."
  13. ASTM E 190-92, 2003, "Standard Test Method for Guided Bend Test for Ductility of Welds. "
  14. Callister, W. D., 2006, "Materials Science and Engineering: An Introduction," 7th Edition, John Wiley & Sons Inc.
  15. Pavlina, E. J. and Van Tyne, C. J., 2008, "Correction of Yield Strength and Tensile Strength with Hardness for Steels," JMEPEG, Vol. 17, pp. 888-893. https://doi.org/10.1007/s11665-008-9225-5
  16. Oliver, W. C. and Pharr, G. M., 1992, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Measurements," J. Mater. Res., Vol. 7, pp. 1564-1583. https://doi.org/10.1557/JMR.1992.1564